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Abstract

by

following condition be satisfied

ORLICZ SPACES FOR WHICH THE
HARDY-LITTLEWOOD

MAXIMAL OPERATOR IS BOUNDED

DIEGO GALLARDO

Let M be the Hardy-Littlewood maximal operator defined by
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where the supremum is taken over all cubes Q containing x and ¡Q1 is the
Lebesgue mensure of Q. In this paper we characterize the Orlicz spaces
L*, associated to N--functions 0, such thatMis bounded in L* . We prove
that this boundedness is equivalent to the complementary N-function ip of
<k satisfying the A2-condition in [0, oo), that is, sups~ o 0(2s)/zy(s) < oo .

1 . Introduction

It is known that for the Hardy-Littlewood maximal operator, on R, defined

(1.1)

	

9(t; f) =

	

sup
It-rho T - t

If(s)Ids,

to act boundedly in a symmetric space E it is necessary and sufficient that the

IIUTIIE = o(T) as T -> oo,

where a, are the dilation operators defined by Qr f(t) = f ( ,r-1t) . (See Ch . II,
Theorem 6.10 in [2]) .

In this paper we consider the more general Hardy-Littlewood maximal ope-
rator M, on FBn, defined by

(1 .3)

	

Mf(x) = sup 1
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(f E Lio,(R- )),
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where the supremum is taken over all cubes Q containing x and ¡Q1 is the Le-
besgue measure of Q. (Cube will mean a compact cubic interval with rlonempty
interior) .

Our aim is to characterize the Orlicz spaces L*, associated to N-functions
0, for which the operator defined by (1 .3) is bounded . Such Orlicz spaces are
symmetric spaces, but, for the case n = 1, the proof given in here represents a
direct and diferent proof from that given in [2] . Moreover, our characterizing
condition is more manageable than (1 .2) .

Except in basic questions, this paper is intended to be seNcontained .
Now, we shall present the basic definitions and results concerning to N-

functions and Orlicz spaces which will be used in this paper. The prooos of
most of these results can be found in [1] or in II-13 of [3] .
An N-function is a continuous and convex function

	

: [0, oo) -r R Such that
O(s) > 0, s > 0, s-1O(s) -> 0, as s -; 0, and s-1 «s) -> oo, as s -> oo .
As example of N-functions we have : 01(s) = s P , p > 1 ; 02(s) = sP logk(1+s),

p > 1 and k > 0 ; 04(8) = es - s -'1; 0s(s) _ ( 1 + s) log( 1 + s) - s ; 0s (s) _
= exp s 2 - 1 and 0s(s) = fo p where p : [0, oo) --> [0, oo) is defined by p(0) = 0,
p(t) = 2-n if t E [2 -n , 2 -n+ 1 ) and e(t) = 2n-1 if t E [2n-1, 2n), n a positive
integer .
An N-function 0 has the representation O(s) = fo cp where cp : [0, oo) -> R is

continuous from the right, non decreasing Such that cp(s) > 0, s > 0, cp(0) = 0
and W(s) -> oo for s -+ oo . More precisely cp is the right derivate of 0 and will
be called the density function of 0 .

Associated to co we have the function p : [0, oo) �+ ff8 defined by p(t) = sup{s
cp(s) < t} which has the same aforementioned properties of cp . We will call p
the generalized inverse of 0.
The N-function 0 defined by O(t) = fo p is called the complementary N-

function of 0 . Thus, if O(s) = p-1sP, p > 1, then O(t) = q-1tq where pq = p+q .
Young's inequality asserts that st <_ O(s) + O(t) for s, t >_ 0, equality holding

if and only if cp(s-) < t < cp(s) or else p(t-) < s < p(t) .
An N-function 0 is said to satisfy the 02-condition in [0, oo) (or merely

the '~12-condition) if sup9>o 0(2s)fs) < oo . If cp is the density function of
0, then, 0 satisfies A 2 if and only if there exists a constant a > 1 such that
sw(s) < ceO(s), s > 0 .
The 02-condition for 0 does not transfer necessarily to the complementary

N=function ; for example, 0 defined by O(s) = (1 -f- s) log(1 + s) - s satisfies the
02-condition but its complementary N-function 0, defined by O(t) = et-t-1,
does not . In this paper the 02-condition for the complementary N-function
0 of 0 plays a fundamental role ; precisely, this is the characterizing condition .
for the boundeddness of the Ha,rdy-Littlewood maximal operator defined in
(1 .3) . For Chis reason it is very interesting to give some characterizations of
this condition, which permit to know wheter 0 satisfies 02 even if we do not



where S,p = {g E L,p : fx0(1g1)dp < l}, and
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know explicitly the function 0 .

First, it is known that 0 satisfies the 02-condition in [0, oo) if and only if
there exists a constant a > 1 such that ¢(s) < (2a) -1 O(as), s > 0 .
The following characterization, which is used in this paper, appear in the

literature with more restrictive hypothesis than the one we shall use and so we
shall include its proof.

Proposition 1.4 . The complementary N function of 0 satisfies ¡he 02 -
condition in [0, oo) if and only if infs>o scp(s)10(s) > 1, where ep is the density
function of 0 .

Proof of (1 .4) : Let p be the generalized-inverse of cp and let 0 be the com-
plementary N-function of 0 . Assume that 0 satisfies 02; then, there exists
ce > 1 such that tp(t) < ao(t) for every t > 0. On the other hand, it follows
from the equality cases in Youngs's inequality that tp(t) = O(p(t)) -i- O(t) and
therefore O(p(W(s)))/p(W(s)) < a -1

(a - 1)cp(s), s > 0 . Since p(cp(s)) > s
and the function u -> u-1 O(u) increases strictly for u > 0 we obtain that
inf9>oscp(s)1O(s) > a(a - 1)-1 .
Assume now that inf9 >os~o(s)/¢(s) > 1 ; then,

the function s -> s-,3 0(s) increases strictly for
exists a > 1 such that O(s) < (2a)-1O(as), s > 0 .
finishes the proof.

Ilf¡lo = sup{I jfgIdp : g E S,p},
x

1If1j<p) = inf {A > 0 : 10(A-1 1fi)dp ~ l},
x

there exists fl > 1 such that
s > 0 and, therefore, there
Thus, 0 satisfies 02 and this

If (X, .M, p) is a o- -finite measure space we denote by 9972 the space of M-
measurable and p-a.e . finite functions from X to R (or to C). If 0 is an
N-function the Orlicz spaacs Lo - LO(X^p) and L* - L*(X, M, p) are
defined by L,5 = { f E 9N : fx O(I fj)dp < oo} and L* = {f E 9N : fg E L1 (p)
for all g E Lp}, where 0 is the complementary N-function of ~ .
We have Lo C L* and L* coincides with the set of 91T such that Af E Lt for

some positive real A .
The space L* is a linear space with the usual operations and we may define

the following norms in L* :

which are called the Orlicz norm and the Luxemburg norm respectively. Both
norms are equivalent, actually Ilf 11( q5) _< Ilf 11 .p < 2jif 11(0), and they make L*
into a Banach space .
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For a measurable set A, with 0 < M(A) < oo, lIXA11m = p(A)0-1(1/m(A)),
where XA denotes the characteristic function of A .

If O(s) = sp, p > 1, then, L* = Lo = Lp, Ilfll(o) = IIflip and 11911,p = 11911p
where pq = p + q.

2. The main result

Theorem 2.1 . Leí 0 an N-function, 0 the complemeniary Nfunction of 0,

L* ¡he Orlicz space associated to 0 and leí M be the Hardy-Littlewood maximal
operator defined in (1.3). The following conditions are equivalent :

(a) There exist positive constante A and b such that

e
I

n
O(bMf)dx < Al

n
0(j fI)dx

	

,

	

(f E LO) .

(b) There exists a positive constant C such that

1IMf1I(0) < Cl lfll(,t)

	

,

	

(f E L*).

(c) There existe a positive constant h' such that

IIMXAII(0) < KIIXAII(0)

	

,

	

(¡Al < oc) .

(d) 0 satisfies the '~12 -condition in [0, oO) .

Proof. It sufhces to prove (a) => (b), (c) => (d) and (d) => (a).
The proof of (a) ==> (b) is easy. In fact, iff E L* there existe .\ > 0 such that

.\f E LO; hence \bMf E Lo and therefore Mf E L* . Moreover, we have

IR
n O(Mf/(b-1 max(1, A)11f11(0) ))dx <

< A(max(1, A))-1
IR

n 0(If1111fII(0))dx < 1,

for f :~ 0 and thus we get I IMf 11(0) < b-' max(1, A)I If 11(,6) for every f E L* .

The proof of (d) =~> (a) follows from the following interpolation result, taking
into account that M is of weak type (1,1) and bounded in L. .

Theorem 2.2 . Leí
(X, JVI, tC) and (Y, .F, v) be two Q-finite measure spaces,

0 an Nfunction whose complementary Nfunction satisfies the A2-condition
and leí T : Lj(h) -k L.(p) --> 91t(Y) be a quasi-additive operator which is
simultaneously of weak type (1,1) and of type (oo, oo) . Then, T is defined on
L* (M) and there exist positive constante A and m such that

(2.3)

	

Y
0(ITfI )dv < Al 0(ml f1)dh

	

,

	

(f E LO(p)) .



Proof of Theorem 2.2 : By hypothesis there exists a constant C such that

v{y E Y : ITg(y)I > A} < CA-1 I Igldp,
x

IIThil . <- CIIhli.

	

,

	

IT(g + h)I <- C(ITgi + IThi)

for every g E Ll(h), h E L,.(p) and A > 0 .

For f E L* and \ > 0 let fa = fXA(a/2C2) and f' = f - fa where A(a)
_ {x E X : I f(x)I > a} . We have fa E L1 (p) and f' E L,,>(M) and therefore

f O(ITfl)dv = f

	

p(a)v{y E Y : ITf(y)I > A}da <
Y

	

0

_
00

< 2C2 lo

	

A-1
P(A)( f Ifa1dp)da =

x
2C'jf(i)j

= 2C2	If(x)I(

	

A-ICP(A)dA)dp(x),
L

where cp is the density function of ~ .
Integrating by parts, we obtain
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(2.4)

	

J

s
A-](p(a)lo = s -1 O(s) +

J

9

A -2 O(A)dA

	

,

	

(s > 0) .
0

	

0

Since 0 satisfies 02, it follows from Proposotion 1.4 that there exists ,Q > 1
such that 00(s) < scp(s), s > 0 ; then, if 0 < A < 1 we have that .\-20(A) <_

and therefore fo

	

-2¢(X)dA is finite . then (2.4) shows that

f0

9

	

< ~(O -

	

,

	

(s > 0)

and thus, we obtain (2 .3) with A = fl(0 - 1)-1 and m = 2C2 .

Note . If T is also positively homogenous then it follows from (2.3) that

/Y
O(m-1 ITf I)dv < A

Jx
O(I f ~ )dj,

	

,

	

(.f E LO(p))

and T applies L*(X, M, M) in L*(Y, T', v) .

Proof of (c) =~> (d) : It follows from (c) that there exists a constant K > 0
such that IIMEXAIIm :5 KIIXAII0 for every A with ¡Al < oc,with ME being the
maximal operator on balls, defined by MEf(x) = supzCB IBI-1 fB If Idx, where
the supremum is taken over all euclideans balls B containing x and 1111m is the
Orlicz norm .
We denote by B(x; r) the ball with center x and radius r and let a,, be the

measure of B(0 ; 1) .

	

For every pair of reals (v, s), with v > 0 and s > 1, we
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denote by A(v, s) and D(v, s) the halls B(0; (an vs)-I /n) and B(0; (an v)-l en)
respectively.

If x 1 A(v, s) then A(v, s) C B(x ; 21 IX 112) and therefore

MEXA(v,s)(x) ? (2nanVSIIXII2)-1
.

On the other hand, if g = 0-1 (v)XD(v,8) we have fRn 0(Igj)dx = 1 and conse-
quently

IIMEXA(v,s)II0 ~ .0-1(v) 1 MEXA(v,s)dx >

D(v,s)

> (2nanvs)-10-1(v)

(anvs)
-11n

<1Ix11z<(anv) -1 / n
_ (2n vs) -1,0-1 (v) log s .

Since IIXA(v,s)IIá = (vs)-10-1(vs) we conclude that there exists K > 0 such
that

2-no-1(v) log s < Ko_1 (sv)

	

(v > 0) (s > 1) .
Therefore 20-1 (v) <_ 0-1 (v exp (K2n+1», v > 0, which preves that 0(2t) <
< exp (K2n+1 )0(t) for every t > 0 and so 0 satisfies A2 in [0, oo) .

Final Remark. It follows from Theorem 2.1 that the A2 -condition on the
complementary N function of 0 cannot be eliminated from the hypothesis of
the interpolation theorem 2.2 since if the complementary N-function of 0 does
not satisfy A2 (for example, in the case of 0 defined by O(s) = (1 + s) log(1
+s) - s) the result of the interpolation theorem does not hold for 0 and the
Hardy-Littlewood maximal operator in spite of the fact that this operator is
of weak type (1, 1) and of type (oo, oc) . (Moreover, observe that in the above-
mentioned case the N-function 0 satisfies the A2-condition) .
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