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QUADRATIC SYSTEMS WITH A UNIQUE
FINITE REST POINT

B. CoLL, A. GASULL, J. LLIBRE

Abstract

We study phase portraits of quadratic systems with a unique finite singu-
larity, We prove that there are 111 different phase portraits without limit
cycles and that 13 of them are realizable with exactly one limit cycle.
In order to finish completely our study two problems remain open: the
realization of one topologically possible phase portrait, and to determine
the exact number of limit cycles for a subclass of these systems.

0. Introduction and statement of the main results

We consider the differential system 2 = dz/dt = P(z,y), y = dy/dt = Q{z,y)
where P and @ are polynomials of second degree with real constant coeflicients,
and 1, y, t are also real. We call such systems guadrafic systems, @8, for short.

We assume that thesc systems have a unique finite singularity, and we denote
them by @51.

Our goal is to give all the possible phase portraits (modulus homeomorphisms
and changes of the scale of the independent variable ) of the 251 on the sphere
of Poincaré (see [G] and [S]). Note that in this study we must take into account
the number of limit cycles that the 51 can have. This last problem is the
most important difference between this classification and other similar works,
see for instance [GLLJ, [Re].

We prove that there are 111 different phase poriraits for 251 without limit
cycles. Furthermore 13 of them are also realizables by Q51 that have exactly
one limit cycle; the phase portraits es, €7, &3 and eg are determinated module
their number of limit cycles (see Figure 5.16) and we do not know if the phase
portrait ez of the same figure exists for some 51, More specifically, to fimish
completely our study, two problems have resisted our analysis:

(P1) Determine the maximum number of limit cycles that the Q51 z =
=y+pttay, y=—z+by+{{+ bp)z? 4+ (m + b)zy has with conditions p > 0,
(1+4£)? —4pm < Oand (m+b—p)* —4({+ bp) > 0.

(P2) Determine if there is some Q51 that has phase portrait e;3 of Figure
5.18.
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We think that the answer for (P1) will be that the system considered has at
most three limit cycles. About (P2), we think that phase portrait e;3 will not
be realizable by Q51.

Now we shall give a scheme of the proof of the above results. First at all we
need the following notation:

Let X(z,y) be an analytic vector field, and suppose that the origin is an
isclated singularity. Then, we say that {0, 0} is a singulanty of type:
e if the determinant of the linear part DX(0, 0) is not zero,
s if the linear part DX(0,0) has a unique eigenvalue equal to zero,
b if the linear part DX{0,0) has fwo eigenvalues equal to zero and it is
not identically zero.
t if the lincar part is identically zero.

We shall use this notation for the finite singularity of the (351, and the same
notation, but with capital letters when we consider infinite singularities (3.¢.
singulanties on the equator of the Poincaré sphere). When the entire equator
of the Poincaré sphere is formed by critical points we shall say that the J5 1s
degenerate.

Remember that the singularities of type e or s are called elemeniary singu-
lartties,

In Section 1 we give a classification of all the 51 with a reduced number of
parameters (see Lemma 1.2). We subdivide them according with the type of
their infinite singularities. The results are given in Tables 1.1-1.6. After, we
prove that several cases of these tables are topologically equivalent. In Table
1.17 we summarize all the cases that we must to study. In Section 1 we give
also the phase portraits for the homogeneous QS that have been studied in
several previous papers (see Figure 1.1}.

In Section 2 we give an affine classification of all the )51 that are degenerate
or linear. Furthermore, in Figure 2.1 we give all their phase portraits. Hence,
in the following sections we do not consider (251 degenerate or linear.

In Section 3 we study the phase portraits for @51 that have a finite rest
~ point of type h. We know that these systems have no limit cycles. By making
a study case by case we obtain that their phase portraits are homeomorphic to
one of the phase portraits of Figures 3.1 or 3.4.

Section 4 deals with @S1 that have the finite rest point of type € or s,
but that have no limit cycles. The problem is more complicated that in the
above sections because there are a lot of topological possibilities for their phase
portraits, especially when the finite singularity is of saddle-node type. In order
to study these systems we subdivide them into the following three cases:

(A) Q51 with some non—elementary singularity at infinity.
(B} @St with three elementary singularities at infinity.
(C) @51 with exactly two elementary singularities at infinity.

Case (A} is studied case by case. Note that when the singularity at infinity is
non-elementary there are many topological possibilities, The results obtained
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are given in Figures 4.1 and 4.2,

Cases {B} and (C) are studied in a similar way. First, we consider them with
the finite rest point of index 1 or -1, i.e. subcases (B1} and (C1). For these
subcases is easy to do a topological classification of all their possible phase
portraits. The results obtained are showed in Figures 4.3, 4.4 and 4.10. The
realizations of the pictures of these fizures are shown in Tables 4.1, 5.3 and
5.4. Note that the phase portraits Fs3, Fsq of Figure 4.10, are equivalent to
the phase portrait €;; of Figure 5.16, i.e. is the one of problem {P2). When
we consider cases (B) and (C) with the finite rest point of index 0 we obtain
subcases {B2) and (C2). Subcase {B2) with the indices at infinity (1,0,0}
is studied case by case and the results obtained showed i Figure 4.5. The
remainder subcases are subcase (B2} with singularities at infinity of indices
(1,1,-1) (denoted by B2.b) and {C2}. We study them by considering all the
topological possibilities (taking into account also some special properties of the
@) 5, for instance Proposition 3.2). The phase portraits obtained are showed in
Figures 4.6 and 4.11, and their realizations are given in Tables 4.2 and 4.3.

In Section 5 we study the @51 that can have limit cycles. First, we write
them in a more suitable form {see Proposition 5.1). In this new form, they
arc semicomplete families of rotated vector fields (SFR) with parameter b, and
so we have more information about the evolution of their limit cycles when b
changes (see [Du], [P1]).

In the Appendix we enunciate some resulis of several papers about unigqueness
of limit cycles of }5. These results allow us to prove the uniqueness of the limit

cycles for all systems of Proposition 5.1 except the system that we referred to
problem {P1).

From the results of this appendix, the properties of the SFR and some par-
ticular propertics of our QS51, we obtain Figures 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8,
5.8, 5.10 and 5.14 that give us the phase portraits of systems {a), (b}, (c) and
{d) of Proposition 5.1. We obtain also some properties about sysiem (e} of this
proposition (see Figures 5.11, 5.12, 5.13, 5.15, 5.16 and 5.17).

In this paper we use also some results on weak focus (see {Che] or Appendix
B of [CGL]) and the standard results on the local behaviour of a vector field
n a neighbourhood of a singularity (sce for instance [ALGM]). We will refer
in order to simplify the notation, to Theorems £, § and H when we use such
theorems about singularities with this kind of degeneracy. Sometimes we are
interested in knowing if an invariant straight line through a singular point is
formed by separatrices. We solve this question by using the blow up method.

1. Classification of the QS with a unique finite rest point

In a first step we need a general classification of all the 5. In this way we
have the following resuit.
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Lemma 1.1. (see Lemma 1 of [GLL]). The quadratic sysiem

. dx . dy
x—E—P(I,y), y"E{""Q(I:y)

is affine egquivalent, scaling the variable t of necessary, to one of the following

ones: 8}) z =1+4zy, y= QE&?,Q%
(ry  i= y1 3, 5 - (m’g)
e
z=-14z% z
(VD) i=1+2, y—Q” ¥
(VID =2, = Q(e,y)
(VIID) =2, = (z,y)
(IX) &=1, = Qz.v)
(x)  a=o, =)

where Qz,y) = d + ez + by + 222 + may + ny’.

We shall say that an isolated singularity (zo,ys) of a vector fleld X on the
plane is & singularity of type:
e 1if (zo,y0) is a nondegenerate singularity;
3 if the hnear part of D X(xo,%0) has a unique eigenvalue equal to zero;

h if the linear part of DX{zq,yo) has the two eigenvalues equal to zero,
and DX (zo,y0) £ 0.

t i DX(zg,ye) =0
The singularities of type e or s are called elementfary singularities,

We shall denote by (A.a) a @51 of type (A) whose finite singularity is of type
a, where A € {{I},{II),...,(X)} and a € {e,s,h,t}. By using this notation
we can give a classification of the @51.

Lemma 1.2. A Q51 i3 affine equivalent, scaling the varighle { if necessary
to one of the following cases:

(a) (I.e} 2=y—22+azy, y=az+ by + Qx(z,y) with a#0;
(Is) #=y—z?+zxy, §=>by+ Quz,y) with b #0;
(Ih) i:y—z?'—tmry, §:Q2(I)y)‘

(b) (Il.€),{Il.s) or (IL.h).

(c) (IITe) i =y+ 2% ¢ =tz + by + Qa{x,y) with n = § and, either
m#Vand (£ =P £dm <0, orm=0 and £ = b;
(II1.s) i =y+ 2%, §g=y+ Qoz,y) with either n # 0 and
ml—dn(f-1)<0,orn# 0, m=0andl=1, 0rn =0 m#0 end
f=Y,orn=m=0and{#1;
(IILR) & =vy+ 2%, = Qulz,y) with either n # 0 and m? — 4nf < 0,
ornFEl, m=~{f=0,orn=£=0,m#0,orn=m=0,£F£0.
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(d) (IV.e) x-y,y*ix+by+Qg(r yy with >0 and £ =90;
(IV.sy 2=y, y=y+ Qulz,y} with £ £0;
(IVR) 2=y, g=0(z,y) with£0,
(Ve) 2=z -1, g=d+by+lz? + may withm #£0 and d+ £ £ 0;
(V) #=2%—1,9=d+azx+by+L£z° + may + y? with (b+m)* -
—4d+a+8)=0end (b—m)®  —4{d—a+£) <0.
Furthermore, we can assume that the singularily of system (V) i3 on
~ the straight line m =1
(f) (Vils) ¢=2° Sy=yt Qa2(z,y) withn = 0;
(VILR) z=2z% y=z+ Qz,y) withn=1.
(g) We split system (VIII.€) into two subsystems:
(VIiIey) 2=z, y=by+Qxz,y) withb#0 and n =0;
(VIIIey) =z, 9=2+y+Ciz,y) withn=0
{(VIIls) 2=1=z,4y=Qfz,y) withn #£0.
{h} A homogenous gquadraiic system (.e. z = Polz,y), y§ = Qulz,y))
Here Qz(z,y) = £2* + may + ny?, Polx,y) = Lz® + May + Ny2.

(e)

Proof: By Lemma 1.1 we can consider that the @51 is of one of the types,
from (I} to (X). Clearly systems {VI) and (IX) have no finite singulanties. If
sonie system has a singularity of type t we can translate it to {0,0) and so we
obtain (k). So systems (X) are contained in (k).

In the case (I}, let (24, yp) be the critical point of the system. Since zg # 0,
in the coordinates ) = —zo(z — 20), 11 = —Zo2 +y/xo + 2§ + 1/}, t; = ot
system (I} can be written as 2; = y — 2 + oyyy, 11 = @'(z1,11). So (&)
follows.

In the coordinates 2, = z — g, Y1 = 22 + y — x5, where (2¢,yq) is the
critical point of system (II1), it can be written as & = y + 2%, y = o’z + by +
+82 + m'zy 4+ n'y?, where we always omit the subscript one and ¢’ = a+2(f—
~b)zg — 3mzd + dnzd. 1f @' # 0, then system (I1I) can be written in the form
(IIl.e) by using the change of variables z; = [a| Y%z, 1y = || Yy, t, =
|a'|'/?t. If ' = 0 and ¥ # 0 then the transformation z; = (b} 'z, 4 = (V') %y,
t1 = ¥t writes system (II) in the form (IILs). Lastly, if ' = ¥ = 0 then we
have system (IILh), and (c¢) holds.

Without loos of generality we can assume that the singularity is at the origin
for systems (IV}, {(VII) and (VIII).

Now, for (IV) we have d = 0. If = 0 then (IV) can be written as {IV.h) or
(IV.e) according to a is zero or nonzero. If b # 0 and ¢ # 0 using the change
of variables z; = b|b|~|a|'/?z, y; =y, t; = b|b|~!|a]*/?t system (IV) becomes
in system (IV.e). If & £ 0 and a = 0 then the transformation z; = bz, y; = ¥,
f; = bt changes {IV) into the form (IV.s). In short {(d)} follows.

By using the change of variables z; = —z, y1 =y, {1 = —* (if necessary) we
can assume that the singularity of (V) is on the straight line = 1. Therefore,
if the singularity of {V} is of type e then n = 0 and m = b # 0. Now transfor-
mation 3 = %, y1 = ¥ + a/m changes system (V,e} into the form given in (e).
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If n #£ O then the change of variables z; = z, Y1 = ny, t; = ¢ changes system
(V) into the form (V.s) of ().

Making a linear transformation which changes the linear part of systems
(VII} and (VIII) into the canonical Jordan form and scaling the variables (if
necessary), we obtain (f} and (g). =

Now we shall subdivide the cases given in Lemma 1.2, except case (h), ac-
cording to the kind of singularities that the §}S has on the equator of Poincaré
sphere.

For the infinite singularities, we will follow the same notation that for the
finite singularity but with capital letters. If a @5 is such that all the points
on the equator of the Poincaré sphere are singularities we shall say that it 1s

degenerate. The resulits of all these subdivisions are given in Tables 1.1 — 1.16
below.

(A3

3 (E,E,S) (m413° —d8(n—13>0 (Le.1}
2 {EH} n#0,1 | 4 m4n=0|(m+1}>—48(n—1)=0,a+b5#1 | (1.e.2)
2 (E,T) {m+132—df{n—1)=0,a+b=1| (1.e.3)
System | 3 {E,E.S) (m+1)°+4£>0 (T.c.4)
(F.e) | 1 |singulasities| (5) t+m#0 | {m+1)2+4i<0 {l.c.5)
has at | 2 of type (5,8 |it] n=0 {(m+1)24+42=0 {L1.e.8) | with
infinity T {E,55) mEl (1.e.7)
2 (5,H) f+m=0 |m=1,at+b21 {1.0.8)
2 (5T} m=l,a+b=1 (1.2.9}
T (5.5 n=1 | {4+ m+1=0 | m#E-1 {1.e.10)
oo Degen. m=-—1 (fe.11}

(»)

)

(~)

Table 1.1. The singularities at infinity for system (I.e), where

(A) a#0,2nd (2a+ b+ £ —4dala+ b+ 28+ m) < f,ora+b+20+m=

=2a+b+£=0.

(B) a#0,and{a+ b+ 8 —4a(f+ m)<O,orb=m,a=¢+m < 0.
(C) a#0,and bt f=0.
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3 {E,E,E) (m+1Y —48{r—1)>0 (F.0.1) | (L.h.1}
1 {(EY e+ mtng0 [ (m+1) —4f{n—1)<0 (1.0.2) | {1.h.2) (4)
2 (E.5) (m+1}—4f(n—1)=0 (f.5.3) | (J.0.3}
_3_ (E,E,5) n#£0,1 (m+13—48(n—1)>0 (f.3.4) | {I.h.4)
2 {(E.H} E+man=0 | (m=1}2—48(n—1)=0b%1 | (F.2.5} | {1.5.5) {B)
(B,T) (m—1)2 —48(n—1)=0b=1 | (I.9.6} -
Systems T (E.E.S) (m+1¥° 460 (I.s.7} | {1.h.8)
{f.9) 1 {5} £4m#A0 (m+1)2+48<8 (F.e8) | {I.BT) (<)
and (£.h)| 2 [singur. | (5,8 |if [n=0 (m+1)2+4¢=0 (1.2.9} | {(7.h.8) |with
bave at To{lype (8,5,5) m#1 (.2.10} | (J.h.9}
infinily £4m=0 ()
(S,H) m=1, b#l (I.s.11)[(7.2.10)
2 | (E,S mt—1 (1.5.12) | (1.h.11)
L+m+170 (A}
1 {5} n=1 m=-1 {1.3.23) | (1.2 12}
B (5,5) m#~1 (1.5.14) [ (1.6.13)
f4m41=0 {B)
-5 Degen. m=-1 (f.9.15) | {1.k.24)

Table 1.2. The singularities at infinity for systerns {I.s) and {I.h), where
(A)a=0,and (b +20+m)? -4+ {f{+m+n)<Borb+f=£+m=0.
(Bla=0,and b+€=00r b+ 20+ m=0
(Cla=0,andb—m=0o0rb+£=10.

(Dya=0,and b+ £ #£0.
Furthermore, & # 0 in case (I.s) and b = 0 in case {Lh).

3 (2,85 | | m£0 (I1.e1) ()

| 2 | {E . H} m=0 {I1.e2)

3 {E,E.5) mP44850 | (F1.6.3} T
System | 1 (5) 40 | mi44£<0 | (F1.e.4) (B}
(I7.e) | 2 |singulasities | {5,5) |if| n=0 m2 b 46=0) (I e5) | with
hesar | 2] of wee | (E,5,85) m#EC (I1.6.6) [
infinity | 2 (5,H) £=0 | m=0,a%0 | (I[.¢.7) <)

| 2| (5,7} m=a=0 |[{/].c.8) |

2 (5,5) n=1 m#EC (I1.¢.9) (a)

oo Degen. m=0 (IF.e.10}

Table 1.3. The singularities at infinity for system (Il.e), where
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(A) B —dnd< 0, £=0,a#0.
(B} a? —40d < 0, b # 0.
{C)Eithera=0,£0,d#0,0ra#0,5=0,d#0.
3 (E.E.E) m?—4(n=1}50 | (If.s.1)
1 {EY 0 | mi—4{n—1)¢<0 | (F1.9.2) {A) or (B)
[ 2 | (E.5) n#6,1 m?—d{n—1}8=0 | {11.5.3)
3 {E,E,S) m#0 {I1.9.2)
£=p ()
[ 2 | {E.T) m=0 {II.2.5)
System | 3 (E.E.S) mi4ae>0 (If.2.8}
(7.8} | 1 |singularities (5} i 20 | mitato (f1.9.7) |with | (D} or (E)
hasat | 2 | oftype {5,5) n=0 mipai=0 (I7.1.8)
infinity | 3 (E,5,5) m#£0 {(I1.29)
£=0 {(F)
2 {5,H) m=0 (I1.5.10)
T {E 5] m0 (fI.a.1)
££0 (A)or (B)
| 1 | (5 m=0 (I1.s.12)
2 (5.5 n=1 m#0 (1i.5.13)
£=0 _ (<)
oo Degen. m=0 ([1.5.14)

Table 1.4. The singularities at infinity for system (ILs), where

(AYn#0,£#0, ¥ —4dnd =0, 4% — 44d < 0.
(BYn#£0,£+#0,0 —4dnd < 0,a? ~44d =0, 2b{ —ma # 0.
(On#0,=0,¥—-4nd=0,a=0,d#0.

Din=0,2#0,b=0,d#0,a> - 44d=0,m #0.
(EYn=0,£#0,d=0,0#0,a=0.
(Fin=0,6=0,d=0,b#0,a#0.
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3 {(E,E.E) m2—4(n—1¥>8 | ([1.h.1)
3 (E) €20 | m® —4(n—1)e<8 | (F1.R.2) {A4)
2 {E.5) n#0,1 m?ag{n—1Y=0| ({].k.3)
T (E.E.5) m#0 (f1.h.4)
£=0 {B)
System | 2 (E,H) m=0 (I1.4.5)
T : (E.E\5) >0 (I1.h.6)
(11.h) singularities n=0 |é#0 ()
has 2t | 1 of type {S) if £€0 (JFI.R.7) | with
_.2_. (E,S) m#{) {FI.h.8)
infinity E£0 (A
1 {5) m=0 (Ff.2.9)
T {5,5} n=1 m7#0 (fI.h.1D)
£=0 (8}
oo Degen. m= {111}

Table 1.5. The singularities at infinity for system {ILh), where
(AYn#0,8#0,8 —4nd <0, 0 - 44d =0, 26 — ma = 0.
B)yn#0,{=0,6=0,0#0,4d=0.
{C)n=0,#0,=0,d#0,a* —44d=0,m =0.

System 2

(f77.2) has

bt

al tnfinity | oo

stngularities

of type

(E,H)

mEl {{If.e.1)

(H)

Degen.

if| =180 | ({if.e.2)

m=14f=0|{II].e.3)

Table 1.6. The singrlarities at infinity for system (IIL.e).

a (E.E.E) {m—1)2—4nf>0 [(Iil.s.1} | (1 1.h.1)

Systems | 1 (B} n#0 | {m-=1)7—dnf<0 } ({11.0.2} | (FI] h.2)

(I71.3) and | 2 |singularities | (E£,8) |i {m—1)?—dné=0 | (F71.5.3) |(FI{.R.3)

(JIFh) | 2| oftype (E.H) mAl (JIfs.4) | (F1f.k.g)
haveat | 1 {H) n=0 | m=1,{#0 {1if.5.5) -

infinity | o Degen. m=1,{=0 - {I1F.h.5)

Table 1.7. The singularities at infinity for systems (1il.s) and (IILh).
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singularities | {,5,5) nAG | mA£0 [ (FV.el)

System 3
(IV.e) has 2 of type (EH) (i m=0 | (FV.e.2)
at infinity |2 {5,H) n=0|mz0 [ {IV.e.3)
System (I'v.e) is lingar when r=m=>{ {(IV.e.4)

Table 1.8. The singularities at infinity for system (IV.e).

3 (E,5,5) mi—ani>0 {IV.2.1)
System | 1 {E) n#6 [ m*—dnf<o {(IV.5.2)
{IV.s) | 2 | singularities | (E,H) |if m? —anf=02n+m#0 | (IV.5.3)
bes at | 2| of type (BT m?—dnl=2n+m=0 {(IV.s.4)
infinity | 2 (5.H) n=0 [ m#0 (IV.2.5)
1 {(H) m=0 (IV.2.6)

Table 1.9. The singularities at infinity for system (IV.s}.

3 (E.,5,5) m?—dnl>0| (FV.A.1}
System | 1 {E) n#£0 | mE—4nf<0 | (IV.R.2)
(IV.R) 2 | singulasities {E,HY |if m?P—dnf=0 | {IV.L3)
hes st 2] of type (5, H) n=0| mz0 (IV.h.4)
infinity [ 1 (Hj m=0 {1V h.5)

Table 1.10, The singularities at infinity for system (IV.h).

System 2 | singularities | (£,T) m#E1 {(Vie.1)
{V.e) bas at | 1 of Ltype (T jif | m=1,6£0 | (V.e.2}
infinity oo Degen. m=1,{=0]{V.e.3)}

Table 1.11. The singularities at infinity for system (V.e).

System 3| singalacities | [ E,E E) (m—l)z—éf)ﬂ {V.e.1)
(V.sYhesat | 1| of 1ype {E)y || {m—1)2—4f<0|{V.2.2)
infinity | 2 {E,5) (m—1)?—2£=0|(V.5.3)

Table 1.12, The singularities at infinity for system (V.s).
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System 2 |singularities | (E,T) m#1 {VIFs.1})
(VIIa)hae| 1 of type {T} || m=1,84#0 | (VI 2.2}
at infinity | oo Degen. m=1¢=0|{VIIs.3}

Table 1.13. The singularities ai infinity for system {VILs).

System 3 | singularities | (E,E,E) (m—1}%—4nt>0 | (VI kD)
(VII.AYhas |2 of type {E) if (m—1)2—4nf<0 (VIfk2)
ab infinity |2 {E,5) {m—1)2—4nf=0| (VI .k.3)

Table 1.14. The singularities at infinity for systems {VILh).

Sysiems (VIIL e} |2 | singatarities | (5,77 | | m#0 (VITFey 1) [{VIIIes 1}
and (VIfI.e2) have i

at iafinity 1| of type (T) m=0,8#0 | (VIIf.e,.2) | (VIfI.eq.2)
Systems (VIFI.)) and (VIIley) are lnear when m=£0=0 (VIII.e,.3} | (VII] e2.3)

Table 1.15. The singularities at infinity for systems (VIIl.e;) and (VII.ey).

3 (E,5,5) m?—4nf>0 {(VIif.s.1)

System (V71531 |singulacitics | (E) it | m?—dné<o (VI a2}
has at infinity 2| of type | (E.H) m? —4nf=0¢#0 (VI 5.3}
2 (E,T) mP—dnf=0,0=0|{VFif.2.4}

Table 1.16. The singularities at infinity for system (VIils).

In this final classification there are some cases which are affine equivalent.
Now we shall study these cases.

Lemma 1.3. (see Lemma 9 of [GLL]). For n # 0 the system
t=Pz,y), y=d+ax+by+ny’

with a = { can be writien as

$2+1, g:Q(:‘:sy)
I2> y= Q(Esy)
:‘I?'—'lm y:Q(‘I!y)

H- B
Il
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according to whether k = b? — 4nd is negative, zero or positive. If a # © then it
can be wrilten as

i=y+z2) y:Q(xay)

Remark 1.4, From this Lemma we need not to study cases (11.e.2), (1L.e.10),
(I1.5.5), (II.5.14}, (ILh.5), (ILh.11) and {IV.e.2).

Lemma 1.5. If system (I} (in the form given by Lemma 1.2} safisfies £ +
+m+n =0 then by o linear change of coordinates plus a scaling of the vertabie
t, it can be reduced esther to (I] but fulfilling £ +m +n # 0, or Lo enother cose
of the ones given by Lemmae 1.2.

Proof: Assume n # 0 and £ 4+ m + n = 0, then the change of variables
z; = —z 4+ y, y) = x changes our system to the form z =(-1+a+ &)y + (b --
—Dztz({m+2n-1yt+nz),y =z4ytzy. f -1+e+b=0andm+2n-1#9
the new change of variables 21 = 2, 1y = (b— 1} +(m+2n— Dy +nz transforms
1% into a system of type {(II). If —1+a+db=0and m + 2n — 1 = 0 we have
system & = (b— 1)z + nz?, y = z + y + zy hence, from Lemma 1.3 (after
mnterchanging x and y} we can reduce 1t to one of the types (V) or (VII). If
-1+ a+b#0 the change of variables 2, = 2,y = (-14+a+dy + (b — 1)
write it ike @ =y + C2? + Day, gy = (~1+a+bjz + y + zy — (b — 1)z? where
C=n—-(b-1}m+2n-1}/(-1+a+b), D={(m+2n—-1}/(-1+a+b)and we
omit the subindex 1. If D = 0 and C # 0 the new vanables z; = Cz,y = Cy
transforms it into a system of type (III), and if I} = 0 and € = 0 we have
a system of type {IV). The case in which D # 0 and € = 0 in the variables
@1 = 1+ Dz and y, = Dy it is of type (II), and the case m which D # 0 and
C # 0 the change 2, = Dz, y; = —D*y/C, &) = —Ct/D converts it into a
system of type (I) but withn =10.

Assume n = 0 and £+ m = 0. The system becomes & = y — iz + o(—2 +
+y—mz), ¥y = {(bn—a—m?)z +(m —b)y in the variables z; = ma —y, z; = =,
after omiting the subindex 1. If bm — a — m? # 0 the change of variables
1 = {(bm —a—mBz +(m — by, x; = y converts it into a systemn of type (IV).
If bn —a —m? = 0, then m — b # 0 and with the change of variables z; = y,
y1 =z, t; = {m — B}t it becomes a system of type (VIII). B

Remark 1.6. From this Lemmas we obtain that the cases from (Le.l) to
(Le.3), from (Le.7} to (1.e:11), (1.s.4), {I5.5}, (Ls.6), (Ls.10), (I.s.11), (I.s.14),
{Ls.13), (Lh.4)}, {Lh.5}, (Lh.9), (I.h.10}, (Lh.13} and (1.h.14), are affine equiva-
lent to other cases of Lemma 1.2

Lemma 1.7. {e) Systems £ =z, y = Q{z,y) end 2 =y, y = Q(z,y) with
n # 0 and m? — 4nf = O are affine equivalent {0 some systems contained in
iypes (I}, (V) and (VII).

(b) System ¢ = zy, y = d + az + by + mzy can be transformed by o linear
change of coordinates inlo o system of one of the types (IV), (VIII) or (X).



Q8 WITH ONE REST POINT 211

Proof: In the new variables 2, = z, i, = y + mz/2n the differential systems
write £ = P(z,y — ma/2n)}, y = d 4+ (2an — mb)z/2n + by + ny? + mP(z,y —
~maz/2n)/2n, where P(z,y) is either 2 or y, and we omit the subindex 1.
Hence, from Lemma 1.3, (a) follows.

In the variables z; = z, y; = y — ma the system of differential equations
becomes £ = z(y + mz), y = d+ (¢ + mlz + by afler omitting the subindex
1. This sysiem can be transformed into a system of type (IV), (VIII) or {(X)
according witha+m £0;a+m=0,5b#0and a+m=5=10 (in this case d
must be zerc), respectively. So, (b) is proved.

Remark 1.8. From this Lemma we do not need to study the following
cases: (ILe®), (ILe.7}, (I11.e.8), (I1.s.9), (II.5.10), (IV.s.3), {IV.s.4), (VIILs.3),
{(VIIl.s.4) and (IV.h.3).

So, from Remarks 1.4, 1.6 and 1.8 the cases that we must study are summa-

rized in Table 1.17.

{1} Depenerate or linear systems:
Degenerate: (I1l.e.3), {IIL.k.5), (V.e.3}, (VILs.3).
Linear: (IV.e.4), (VIIl.e;.3), (VIile;.3).

(2) Neither degenerate nor linear systems:

a} with a critical point of type e.
(Le.d}), (Lesb), (Le.B); {IlLel), (Le.3), {Il.e4), (Il.c.5), (ILe9}
(Il1.e.1), (ITl.e.2); {IV.el), (IV.e3); (V.el), (V.e2); (VIILey .1},
(ViiLey.1), (VIILe; .2), (ViILe,.2).

b) with a critical point of type s.
(Ls.1), (1.s.2), {15.3), (L.s.7), (1.5.8), (1.5.9), (L.s.12), (1.5.13); (11.s.1},
(I1.s.2), (I1.5.3), (IL.5.4), {ILs.B), (11.5.7), {I1.s.8}, (ILs.11}, (il.5.12},
(I1.s.13); (I1Ls.1}, (1iLs.2), (I1L.5.3), (111.s.4}, (I1L.5.5); (IV.s.1},
(IV.s.2), (IV.s.5), (IV.s.6), {V.s.1), (V.s.2), (V.s.3); (VILs.1},
(Vils.2); (VIILs.1), (VIILs.2).

¢) with a critical point of type A.
(Lh.1), (Lh.2), {Lk.3), (Lh.6), (L.h.7), (L.h.8),(L.h.11), (Lh.12},
(ILh.1), (IL.h.2), (I1.h.3), {IL.h.4), (IL.h.68}, {IL.h.7), (ILh.8), (11h.9),
(ILh.10); (IILR.1), (IILh.2), (IILk.3), (IILh.4); (IV.h.1), (IV.h2),
(IV.h 4), (IV.h.5); (VILh.1}, (VILK.2}, (VILK.3}.

d) with a critical point of type t, (i.e. homogeneous quadratic systems).
‘Table 1.17. Classification of all the 51,

The phase portrait of homogenous polynomial vector fields on the plane, or
on the Poincaré sphere has been studied in many papers, see for instance (M],
[A] and [D]. In Figure 1.1 we give all the phase portraits for planar quadratic
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homogenous vector fields on the Poincaré sphere with only one finite critical
point.

iy S

B 2
7 » j K 3
S / RN }Z/ b /

Figure 1.1. Phase portraits for homogeneous quadratic systems, topologically
different from (b} of Figure 3.1.

e

From the following resuit we know that the only cases of the ones of Table
1.17 for which we can have limit cycles are (1) and {2).a.

Proposition 1.9. (See {C1], [CJ]). Lei v be ¢ periodic orbit of u Q5 and

D the region bounded by ~y. Then there exsts an open set U which contains D
" such that I contains exactly one singularity of the 35S which is o weak focus,
& focus or a center,

2. Phase portraits for degenerate and linear Q51

From Remark 6 of [CGL) a2 Q5 such that g{z,y) = 2@ (z,y) ~yPlz,y) =0
has no limit cycles. Degenerate and linear QS1 are such that g{z,y) = 0 and
hence they will not have limit cycles.

From Table 1.17, we know that the degenerate and linear Q51 are affine
equivalents, scaling the variable £ if necessary, of one of the following types:

Degenerate: {ILe.3), (II1L.h.5}, (V.e.3), (VIILs.3};
Linear: {IV.e4), (VIiLe;.3}, {VIIie2.3).

We can write them in the following form.
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Lemma 2.1. For a degenerate or linear QS1 there exists an affine transfor-
mation and a scaling of the variable t which reduces it to one of the following
systems:

(DY t=y+z% §¢=-x+by+azy with |b <2
(D2) t=y+2’ y=uzy.

(D3 ¢=22-1, g=z+y+azy

(D.4) =z =27, ¥ =y + Ty

(L1} 2=y, y=—xz+by with 0<b<?2
(L2} &=z, g="by with b# 0 and |b| < 1.
{L3) z=r=, y=z+y.

Proof: Cases (D.1), (D.2), (D.4) and (L.3) follow from {IIl.e.3), (IILh.5),
(VIiLs.3) and (VIIl.e;.3) respectively. The case (D.3) follows from (V.e.3)
using the coordinates z; = =, y; = —y/d — 1. If [§| <1 the system (VIIl.ey.3}
is (L.2). If || > 1 then system (VIIl.e;.3) becomes into (L.2) by using the
transformation z; =y, 1 = z, t; = bt. Sytem ({IV.e.4) with plus sing, or with
minus sign and b > 2 becomes into {L.2) or (L.3) writting the linear part of
the system in the canonical Jordan and scaling the variables. System (IV.e.4)
with minus sign and 0 < b< 2is (L.1). B

Theorem 2.2. The phase porirait of o degenerate or linear QS s homeo-
merphic {except, perhaps the orieniation), to one of the separatriz configu-
rations shown in Figure 2.1. Furthermore, sytems (D.1)-(D.4), (L.1)-(L.3)
realize these configurations.

Proof: By Lemma 2.1 to show the theorem it is sufficient to draw the phase
portraits of systems (D.1)-(D.4), {L.1)-(L.3).The expression of (D.1) in coordi-
nates z; = —14y+br,y; = zis® = zy, § = I +x+by+y? with ~2 < b < 0 (ta-
king z; = —z,1; = —t if necessary). In the local chart U} {see [G], [S]) this sys-
tem becomes y' = z(1+by + z), 2’ = 2{—y). Hence phase portraits I); or D; of
Figure 2.1 follow according to b # 0, b = (. System {D.2) writesas ¢’ = 2, 2 =
—zz, in the local chart Up. The orbits of this system (after omitting the common
factor 2) are z = —y2/2 + k. Therefore its phase portrait is like Dy of Figure
2.1. The trajectories of system (D.3) are y(z) = [(z — L}log(|z — 1|/|z + 1]} —
—~2k(z - 1}]/4, and z = 1. Hence its phase portrait is given by Dy of Figure
2.1. The phase portraii of system {D.4) is given by D5 of Figure 2.1 because its
trajectories are y(z} = kx exp{—1/z} and = = 0. The linear system (L.1) has a
centre or a focus at the origin according to b = 0 or 0 < & < 2. Therefore, its
phase portrait is like Iy or L; of Figure 2.1, respectively. The phase portrait
of the linear system (L.2} is given by L3, L; or Ly of Figure 2.1 according to
Q<b<l,b=1o0r -1 <& <0, Lastly, Ls of Figure 2.1 gives the phase
portrait of (L.3). B
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- L
NI

Figure 2.1. Phase portraits of S1 either degenerate or linear.
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3. Phase portraits for QS1 neither degenerate nor linear with
the finite rest point of type A

By Table 1.17 we must study the following cases:

(1h1), (Lh.2), (Lh.3), (Lh.6), (1h.7}, (Lh.8), (Lh.11}, (Lh.12); (ILh.1),
{(11.h.2), (ILh.3), (IL.h.4), {ILh.6), (ILh.7), (ILh.8}, (11L.h.9), (ILk.10); (IILh.1),
(111.4.2), (IILh.3), (IILh.4); (IV.h.1), (IV.h.2), (IV.h4), (IV.h.5); (VILh.1),
(VILh.2), (VILh.3).

Before begining the study case by case we shall give some general results that
will be useful in order to short the proofs.

Proposition 3.1. The topological possibilities for a phase portrait of a QS1
of type (A, a) where A € {E,5} end a € {e,s,h} are given in Figure 8.1.

{a} {b) {c}

Figure 3.1. Topological possibilities for phase portraits of type {A.a) where
A€ {E, S5} and a € {e,s,h}. The symbol —3 denotes either a stable node or
focus or stable or unstable focus on the interior of one or more limit cycles, the
outhermost of which is externally stable.

Proof: Tt follows easily from Theorems B, §, H and the Poincaré—Hopf Theo-
rem. H

In Section 5 we shall see that the phase portrait given by (c) of Figure 3.1
will be either without limit cycles or with a unique stable limit cycle.

Proposition 3.2. (see [Y2]). Given ¢ QS and a straight line L connecting
o fintte critical point M with an infinite critical point N, L is either a trajectory
or a line without contact (ezcept M ). In this later case, trajectories cut NM
and MN' {where N' is the diameirical opposite infinite critical point of N ) in
appostie direction.

Lemma 3.3. The local phase poriraits of the singularity of type H for a
QS of type (1II) with n = 0 are those shown in Table 8.1.
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a< 0.

m=b-£=0, a>Q
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Table 3.1. Local phase portrait of the singularity of type H for a Q51 of type
(I11}. Note that in the cases {#) the infinity z = 0 is not formed by separatrices.
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Proof: A Q51 of type (III) in the local chart U; writes in the form

2

t=z+ (1 —m)a® —brz — £2® — azxz — dz2t,

S b= —maz — b2t — 2%z — azz® — d2°.

After appling to this system two succesive changes of variables x = z, z =
wyz and ¢ = z, w; = wr and omitting a common factor z, the system goes
over 1o

£ =(1=-m)r~0z° + 2w — ba’w — azr’w — dz*w?,

W= (m — 2)w + few — 2w? + brw? + az’uw? + dzuw®.

If m # 2 then this system has exactly two singularities on the w—axis, the
points (0,0} and (0,(m — 2)/2). From Theorems E and $ we can study its
nature. When m = 2 the unique singulanty is the origin. Now, by using
Theorem H the lemma follows. B

In the hypotheses of Lemma 3.3, by studying the nature of the singularity
of type E (if it exists), we have the behaviour of the flow near infinity. It is
showed in Figure 3.2.

LSS

Either m <0, or m=0, b-£<0, Either m=b-£=0, o=0, b-£20,
m=b-£=0, a>0. a<0, or <\m<1.

R1T
o

=

m=1,£>7. wm=1, £<C 0. 1< m <2, mz2.

Figure 3.2. Phase portraits of systems studied in Lemma 3.3 in a neighbour-
hood of infinity.
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Lemma 3.4. The local phase portrail of the singularity of type H for the
system & =y, ¥ = az + by + x* + may with m # § is shown in Figure 3.5.

- T

m>0, m <0,

Figure 3.3. Local phase portrait of the singularity of type H for the system
considered 1n Lemma 3.4.

Proof: The system in the local chart U, goes over to & = z — mz? — bzz —
£z® —a2%z, 3 = —mrz — b2? — 2%z — axz?. We apply to this system the two
succesive changes of variables ¥ = z, # = whz and ¢ = 2, wy, = wz. Therefore
it is equivalent (after omitting a common factor z) to & = —mz — 2% 4 2w -
brtw — axlw, ¥ = mw + lrw — 2w? + brw? + ax?w?. This system has two
singularities on the w--axis, a saddle at (0,0} and a node at {0,m/2). So the
lemma follows. B

We shall begin our study for system {VII) and will follow in the decreasing
ordering.

Systemis {(VIL.h.1), (VILh.2} and (VIL.h.3). These systems have the
expression & = z2, ¥ = & + £2% + may + y®. In the coordinates z, = z,
y1 = y + (m — 1)z/2 these systems write as

(3.1) i=at g=z+ 0 Ly + 97,

where £/ = (4 — (m — 1)?}/4 and & < 0,£ > 0,€' = 0 correspond with the
systemns {(VILh.1), (VILh.2), (VILh.3) respectively. By Theorem H we have
that the (0, 0} of (3.1) is a saddle—note. In order to know if x = 0 is a separatrix
of this point we make two successive “blow ups”: = = wy, y = y; w1 = wy,
y = y and system (3.1} transforms into {after omitting a common factor y)

=y 4wy + wy? & fwiy?, = —2w - 2w’ — 2wyt — wa-,
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that has two singularities on the w-axis. Since the (0,0) is a saddle point we
have that z = 0 is a separatrix of (0,0) of system {3.1).

The point (G, 0} of the local chart U is an attractor node. By Theorems E
and § in the local chart U; there is a saddle and a node, no singularities, or
one saddle-node if £ < 0,£ > 0 or # = 0, respectively. From these facts and
the study of the vector field given by (3.1) on the axes we have pictures ks, hs
((a} of Figurc 3.1} and hj of Figure 3.4 according with # < 0,{' > 0 or # =0,
respectively.

System {IV.h.1). The equations of this system are £ = y, y = £z? + may +
+ny? with nf # 0 and m? — 4nf > 0. In coordinates z1 = nz, y; = ny it can
be written as

(3.2) i=y, §=L rmoy+y,

where we can assume that m < 0 (with the change of variables y; = —y, z; = =,
t1 = —t if necessary}. By Theorem H, the (0,0} of (3.2) is the reunion of two
hyperbolic sectors. By Theorems F and §, we obtain two different behaviours
on the infinity according with £ > 0 or £ < 0. By studying vector field {3.2) on
the axes and by Proposition 3.2 we obtain phase portraits hy and ks of Figure
3.4, respectively.

System (IV.h.2). By Theorem H and Proposition 3.1 the phase portrait
of this system is (b) of Figure 3.1 or cquivalently hg of Figure 3.4.

System (IV.h.4). In the coordinates z; = m?z /e, y, = m3y/0? ¢, = ét/m
this system can be writien as

(3.3) i=y, y=z°+zy.

By Theorem H, the finite singularity is the reunion of two hyperbolic sectors.
By Lemma 3.4, the singularity (0,0) of the local chart I/, is the union of a
hyperbolic sector with an elliptic one and the infinity, z = 0, is formed by
separatrices. From Theorem S and the Poincaré-Hopf index Theorem we can
prove that the singularity of type S is a saddle-node. In short, taking into
account the flow on the axes the phase portrait of {3.3) is like A7 of Figure 3.4.

System (IV.h.5). This system has the expression & = y, y = x° {after
scaling the variables). Its integrals curves are z%/3 — y%/2 = k. So its phase
portrait is homeomorphic to kg of Figure 3.4.

Systems (IIL.h.1}, {IT1.h.2) and (II1.h.3). These systems can be written
as & =y + 2%, y = £z% + may + ny® withcither n # 0, m? —4nf <G or n # 0,
m=4£=0. lf m = £ =0, using the changes z, = y, y; = z and 2z, = n’z,,
Y2 = nyi, ta = t/n this system writes like a system of type (VILh) that has
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Figure 3.4. Phase portraits of (51 that have a finite critical point of type A
and whose infinity is neither degenerate nor linear.
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been already studied. In the other case the change of coordinates z; = z/n,
y1 = y/n?, {; = nt writes our systems in the form

(3.4) 2 =y+2%, §=~L2%4 may+ 1yt
By Theorem H, the finite singularity of this system is the union of two hy-
perbolic sectors. By Theorems E and 5, the behaviour of the vector field in a

neighbourhood of infinity for systems (IILh.1}, {IILh.2) and (IILh.3) is given
by (2}, (b) and (c) of Figure 3.5, respectively.

.m Q(b) @(c)

Figure 3.5. Behaviour in a neighbourhood of infinity of system (3.4).

The case {IIL.h.2) is already studied In Proposition 3.1. By Proposition 3.2
by taking the straight line connecting the {0,0) with the saddle at infinity
(resp. the saddle-node at infinity) in the case (IILh.1) (resp. (III.h.3)) and
studying the vector field on the axes we can determine totally the behaviour of
the separatrices of the origin. Their behaviour is showed in Figure 3.6.

o,
ot i

Figure 3.6. Separatrices of the origin of system (3.4)}.
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Hence the topclogical possibilities for the phase porirait of system (3.4) are
hg, ko, Big, 11 and hyp of Figure 3.4. Note that y = —mz — m is an mvariant
straight line by the flow when £ = —m and 1t is a straight line without contact
when £ # —m. From this fact we have that the phase portraits of system (3.4}
when £ = —m, m € (~1,0; { = —m, m € {(—4,—-1); m < —1; m = —1 are hg,
ho, hig and hy; of Figure 3.4, respectively. New we must find a @51 that has
the phase porirait k3 of Figure 3.4. We do not worried about it because this
phase portrait will be the phase portrait of system (Lh.8).

System {I1IL.h.4). This system has the expression
(3.5) t=y+2°, y=4~£"+may,

with m # 1 and either m # 0 and £ =0 or m = 0 and £ # 0. Assume m # 0.
Then by Theoremn H the singularity (0,0) of {3.5) is a saddle ¥ m < 0 and
the union of a hyperbolic sector with an eliiptic one if m > 0. By using the
same arguments that in the study of the finite singularity of systems (VILh.I),
(VILh.2) and (VILh.3), when m > 0 we have that the invariant straight line
y = ( is formed by separatrices only if 0 < m < 2. Therefore, by Lemma 3.3 it
follows the phase portraits hy3, hig, Ris, Pis 2nd Ay of Figure 3.4 according
tom<0,0<m<l,la<m<?2 m=2and m > 2, respectively.

Now suppoese m = 0. Then system (3.5} can be written in the form
(3.6) i=y+ad, y=z

For this system the origin is the union of two hyperbolic sectors {see Theorem
Y. So, by Lemma 3.3, and studying the flow on the 2 and y axes, we obtain
that the phase portrait of (3.6) is like k5 of Figure 3.4.

- System (IL.h.1). This system can by written in the form &z = 2y, § =
=d+taz +by+ iz +may+ny?, withn #0,1, £ # 0,8 —4nd < 0, ¢® = 44d,
20¢ = ma, and m? — 4(n — 1)¢ > 0. By using the change of coordinates
z1 = ala| iz, yi = mlm| ela"ty, t; = m|m| " alaT ¢, (where m|m|™! = 1if
m = {J) we can assume that ¢ > 0, m > 0.
The finite singulanty (—a/2¢,0), by Theorem H, is union of two hyperbolic
sectors. By Theorem E and by studying the vector field on the straight lines
= 0, z = 0 (invariant}, # = —a/2{, and the cnes connecting the finite
smgulanty and the saddle at infinity (if n > 1) we obtain phase portrais
homeomorphic to kg, hg, and hs of Figure 3.4 according withn > 1,0 < n < 1
and n < § respectively.

Systems (I1.h.2), (IT.h.7} and {IL.h.9). These systems have been studied

in Proposition 3.1.
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System {II.h.3}. This system has the expression = zy, y = d+azx + by +
+Hzt +may+ny? with n #0,1,£ #0, m? = 4(n— 1), ¥ —4nd < 0, a? = 44d,
2b¢ = ma. In the coordinates ;3 = axfb?, yy = y/b, £ = bt it can be written
asst=zy,y=1/dn—+z+y+(n—Dz?+(2n - 2)zy + ny® withn > 1.
The finite singularity, by Theorem H, is union of two hyperbolic sectors. By
Theorems E and S and by studying the vector field on the straight lines z =0
(invariant}, y = 0, z = —1/(2(n — 1}) and by Proposition 3.2 we obtain that
the phase portrait of this system is homeomorphic to hjg of Figure 3.4

System (IL.h.4). This system becomes
(3.7} & =2y, §==z+zy+ny’,
with n # 0,1 in the variables z; = m%xz/a, y, = my/a, t; = at/m.

By Theorems E and S we can determine the behaviour of system (3.7) n a
neighbourhood of infinity, By Theorem H, the origin 1s 2 saddle if n < 0 and
the union of a hyperbolic sector and an elliptic one if n > 0. By using the same
arguments that in the cases (VILh.1}, (VILh.2) and {VILh.3) we have that the
invariant straght line ¥ = 0 is a separatrix if n > 1 and it 1s not a separatnx
if 0 < n < 1/2. Hence phase portraits of system {3.7) are hjq, koo, fiz; and
hgq of Figure 3.4 according withn < 0,0 < n < 1/2,1/2<n < 1landn > 1,
respectively,

System (IL.h.6). In coordinates z; = ela|™'(¢/d)"/ %z, ¥, = (1/[d]}*/?y,
ty = |d[*/*t this system can be written like £ = zy, ¥ = 1 4+ 22 + 2?. This
system has the invariant curves z = 0, y? = z? -4z + 2log |z| + k. So its phase
portrait is homeomorphic to hg of Figure 3.4.

System (IL.h.8). In coordinates z, = ala| 1/ 2d~ 125,y =d /2y, ¢, =
= d'/2¢ it writes in the form @ = ay, y = 1 + 2z + m'y + 22 + m'zy + y? with
m' #£ 0 and |[m’| < 2. By using the new coordinates z;, =z, 41 = —y, t; = —¢
(f necessary) we can assume that 0 < m’ < 2. By the same arguments that
in the above cases we obtain that its phase portrait is homeomorphic to by, of
Figure 3.4.

System {IL.h.10). This system can be studied in the same way that system
(IL.h.4) but with n = 1. Its phase portrait is given by hjs of Figure 3.4.

Before the study of system (I} case by case we shall give some general results
about it.

Lemma 3.5. (3} System (Lh} with £ =0 is affine equwafeni to some system
contained in types (ILk) or (VILR).

(i) System (Lh) with £ # O has two hyperbolic sectors af the origin.

Proof: (i) follows by taking the changes of variables z; =y, yn = mz +ny if
m #0,and 21 =y, 1 =z, t; = nt i m = 0, respectively, and (ii} follows from
Theorem H. W
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Hence from now on we will assume that £ # 0 for system (Lh).

Lemma 3.6. System (Lh.11) {with { £ 0) can be transformed, by a change
of variables plus a scaling of the time, inio one of the following cases: (1ILh),
(ILR} or {Lh.3).

Proof: This system has the equations & = y—z?+zy, ¥ = =% +may+y® with
m# —1,0+m+1 # 0, m*—4f < 0. In the coordinates z; = z+{m+1y /¢, y, =
= yit writes as 3 = y+ma? +{f—m{m+1))zy /L, § = €22 +{—-m—2)zy+{{+m+
+1)y2/e. i £—m{m+1) = 0 in the new coordinates x; = mz, y1 = my it writes
like a system of type (IILh). If £—m{m + 1} # 0 and m = 0 this system writes
like a system of type (ILh} in the coordinates 21 = —z + 1,y =y, H = —L.
Finally if £—m(m+1) # 0 and m # 0 in coordinates z; = (—m(m+ 1)+ £)z/¢,
y = ~{(-m{m + 1) + /8)?y/m, t; = —mbt/{(—m(m + 1) + £) we obtain
¢ =y—zttay, ¢ =(—mim+1)+a2/m?+(m+2zy/m+(m+1+0y7 /(6 -
—mi(m + 1)) and since (m + 1 + £)/{£ — m{m + 1)) # 1 we have a system of
type (Lh.3). &

Systemns (Lh.1) and (Lh.6) have at infinity singularities of types (E, E, E)
and (E, B, 5) respectively. Hence from Lemma 3.5 (ii), Theorems E, § and the
Poincaré-Hopf index Theorem we have that in both cases the indices of the
points at infinity are {1,1— 1} and, by consequence, these systems have always
a saddle at infinity.

Lemma 3.7. None of the separatrices of the origin in systems (Lh.1) end
{Lh.6}) can coincide with the separatrices of the saddle points of these sysiems
at infinity.

Proof: By theorem H we know that the critical direction of the (8,0) is
y = 0. Since y = 0 is not an invariant straight line for these systems we know,
by Proposition 3.2, that the straight line L connecting the (8,0} with the saddle
point at infinity is without contact for the flow of these systems. If we assume
that a separatrix curve of the origin coincides with a separatiix at infinity of
the saddle pomnt then 1t should exist, at least, a contact point p € L and this
fact 1s impossible (Figure 3.7 illustrates this claim). A

<

Figure 3.7. Local phase portraif that is not possible for 5.
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Systems (I.h.1} and (I.h.6). From Lemma 4.7 the unique topological
possibilities for the phase portraits of these systems are by, hg and kg of Figure
3.4. These phase portraits have been already realized. '

Systems (1.h.2), (I.h.7} and (F.h.12). They follow from Proposition 3.1.

System (I.h.3). This system has the equations z = y — 2% + zy, y = fz* +
+may+ny?, with £ £ 0, n # 0,1, 2m+4£41 > 0, m?2—4nf4+2m+4£+1 = 0 and
2n+m — 1 # 0. By using Lemma 3.5 (ii), Theorems F and § and Proposition
3.2 applied to the straight lime connecting the (0,0} with the saddle-node at
infinity we obtain that its phase portrait is homeomorphic to hyg, hyy or kg of
Figure 3.4.

System (L.h.8). This system writes as ¢ = y — z° + 2y, § = —z°/4. By
Theorem S and by studying the vector field on the straight lines z = 0, y = 0,
y=1z/2, y=2/2~1/2 we obtain that its phase portrait is homcomorphic to
hi2 of Figure 3.4, that is the one that we had not yet realized.

From Figure 3.4, it follows that in the study made in [JR] there are some
omissions. For instance pictures hys, A7 and hge do not appear in their clas-
sification.

4. Phase portraits for QS1 neither degenerate nor linear with
the finite rest point of type s or ¢ and without limit cycles

In this section we shall study the phase portrait of @51 neither degenerate
nor linear with the finite rest point of type 5 or e and that can not have limit
cycles. The systems with a singularity of type e and that can have limit cycles
will be studied m the following section.

We classify the systems studied in this section into the following cases:
(A) @51 with some non—elementary singularity at infinity.
(B) @51 with three elementary singularities at infinity.
(C) QS1 with exactely two elementary singularities at infinity.

Note that we do not consider the systems with a unique elementary singula-
rity at infinity because these systems have been already studied in Proposition
3.1

Case A. We subdivide these systems into two subcases:

(A1). Systems of case (4) and with the finite rest point of type s.

We must study systems {(VII.s.1), (VII[.5.2), (IV.s.5), (IV.s.6), (I1].5.4)
and (I11.s.5).

System {VIL.s.1). It has the equations # = 22, i = y+f2? tmzy, withm #
# 1. If £ # 0 the we introduce the change of variables z; =2, 1 = z + (m —
1}y/¢, and the system becomes into ¢ = 22, § = 2 + y + mazy with m # 1. This
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system has the straight line x = 0 invariant and the other solutions are given
by

—ifz
y(z) = 71| - xl"‘{—/ mletdt 4 k),
o

where ty = 0if £ < 0 and ¢y = —o0 if 2 > 0. Drawing these solutions for m < 1
or m > 1 we obtain the phase portraits £, or £ of Figure 4.1, respectively.

‘When ¢ = 0 system (VI1.s.1} has the straight lines = 0 and y = 0 inva-
riants, and the other solutions are y(z) = k|z|™e™?/*. So,we have the phase
portraits E; or B3 of Figure 4.1 according to m < 1 or m > 1.

2
H

System (VIl.s.2}. In coordinates z; = z, vy = y/€ it writes £ = =z
¥ =y + 22 + zy. lts solutions are the straight line z = 0 and

—ifz
y(z) = _xe—lz’*(/ t7 it + k),
to

where tg = 01f £ < 0, or {5 = —co if £ > 0. Therefore, its phase portrait locks
like E; of Figure 4.1.

System (IV.s.5}. In coordinates z; = £z, 31 = £y this system has the
expression £ =y, ¥ =y + ¢ + mzy, m # 0. By Lemma 3.4 the singularity of
type H is the union of an elliptic sector with a hyperbolic one, and the infinity
in its neighbourhood is formed by two separatrices. By Theorem 5 we obtain
the local behaviours of the saddle-nedes at origin and at infinity. In short,
by using the flow on the axes we obtain the phase portraits Ey, Fg, Ey and
By of Figure 4.1 accordingtom < —-1,m= -1, -1 <m < Oand m > 0,
respectively.

System {IV.s.6). By using the same variables that in the above system we
obtain that its expression is # = y, § = y + z2. Since the infinite singularity is
a node (by Theorem H) we obtain that its phase portrait is homeomorphic to
the phase portrait (a) of Figure 3.1.

System (IIl.s.4). This system has the equations £ = y+ 2%, y =y + &’ +
+mzy where m # 1 and either m#ZCand =1, crm=0and £ £ 1.

Assume that m 3 (. Then the finite singularity is a saddle if m < 0 and an
unstable node if m > 0. Then, by Lemma 3.3, Figure 3.2 and by studying the
flow on the axes we have the phase portraits Ey, Fiq, E1y and Eiy of Figure
4.1 accordingtom < 0,0 <m< 1,1 <m <2 and m = 2, respectively,

Now, suppose m = 0. Then, the system becomes & = y + 22, ¢ = y + fx°
where £ # 1. By Lemma 3.3, the singularity of type H is a saddlenode an in
its neighbourhood the infinity is formed by two separatrices. By Theorem 5,
the origin 15 2 saddie-node and we know the local behaviour of its separatrices.
In short, using the flow on the axes we obtain the phase portraits E;3, Eyg,
E5 and Eg of Figure 4.1 according to £ < —1, €= -1, -1 < ¢ < land £ > 1,
respectively.
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Figure 4.1. Phase portraits of case {Al).
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System (II1.s.5). This system is given by the equations 2 = y + 2%, § =
= y + 2% + zy. The origin is an unstable node. Then, by Lemma 3.3 and by
studying the flow on the axes we obtain that its phase portrait is like Fy7 of
Figure 4.1.

{A2). Systems of case (A4) and with the finite rest point of type e.

We must study systems (VI15.e.2), (VIIIe3.2),{VIIiey.1), (VIIeg.1),
(V.e.2), (V.el}, (IV.e.3) and {I11.e.1}. :

System (VIIL.e;.2). This system has the expression & = z, § = by + £z?
with b # 0. We introduce the change z; = z, y) = y/£. Then, the system
becomes £ = z, § = by+x? with b # 0. Its solutions are y(z} = 22 /(2—b)+k|2|*
and z = 0if b # 2, or y(z) = 2% logfz| + kz? and = = 0 if 6 = 2. So its phase
portraits are like Eyg, (¢) of Figure 3.1 or Eyg of Figure 4.2 according to & < 0,
0 < b €2or 2 < b By reversing the orientation of all the trajectories n this
last case we obtain the phase portrait of the bounded guadratic system omitted
in [DP], (see also [CGL).)

System (VIIl.ez.2}. In the varisbles zy = fx, y, = fy it converts nto
# ==z, 9=2+y+ 2% Since its solutions are y{2} = zlog|z| + 2% + kz and
z =0, its phase portrait is shown in (¢} of Figure 3.1.

System (VIIl.e;.1). This system is given by @ = z, ¥ = by + £a? + may
with bm # 0. If £ # 0 then the change of variables z) = mz, 3, = miy/{
converts it to the form @ = &, § = by + ¥* + zy with b # 0. The solutions of
this system are z = 0 and

log
y(z) — cb]og{ﬂe:(/ E(Qﬂb)te_e[df + !’C).
{0

So, its phase portrait is shown in Fyy or Ey; of Figure 4.2 according to & < 0
or b >0

When ¢ = 0 we introduce the coordinates z; = mx, y; = = and the system
has the equations ¢ = z, ¢ = by + zy with b # . Since its solutions are x =0
and y(z) = ke*eb1oB 12l we obtain the configurations Epg or Fy; of Figure 4.2
according to b < Qor b > 0.

System (VIIY.e;.1). This system has the expression @ =z, gy =z +y +
+£x% + may with m # 0. We introduce the variables x, = mz, y; = m{y + £2)

and the system becomes & = &, § = x +y + &1 — m)z? /m + zy. Its solutions
are z = [ and

log |x] .
y(z) = :.':e’(/_ e (14 41 — m)e'/m)dt + k).

So its phase portrait is like By of Figure 4.2,
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Figure 4.2, Phase portraits of systems (42).
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System (V.e.2). Thissystemisgivenby 2 =22 - 1,9 =d+y + €% + zy
with £ #0and d+£ #£0. It goesoverto 2 =% — 1,y = d' + y + 2% + zy with
d' # —1, by using the transformation z; = z, y; = y/¢. This system has the
straight lines ¢ = &1 invariant and the other solutions are given by

y(e) = 27 (1 — 22 d'log([e — 1}/l + 1) + 271z + 1)(x — 1)
/1I(2103(l$—1|/|$+ll))

(1+ e2)2e 21 — &) Vdt + &].

&

where ty = 0 or {g = —o0 according to ¢ € (—o0, -1} or z € (—1,1JU {1, o).
Drawing these solutions we obtain the phase portraits Ep; of Figure 4.2 and
E;7 of Figure 4.1 accordingtod' + 1 < Qord + 1> (.

System (V.e.1}. The expression of this system is given by # = 2% — 1,
v =d+ my + £z + may with m # 0,1 and d+ £ # 0. The change of variables
2y =2—-1,y =y+La/{m—1)+[dlm—1}—£(m —1)]/[(2m)(m — 1)] writes the
system in the form & = 2z + 2%, § = @'z + 2my + may with ¢’ = —{d+£)/2 # 0.
We can assume that o' > { using the change z; = #, y1 = —vy, if necessary.
The solutions of this system are z = 0, r = —2 and

| ploxlzl/la+2n/2
¥(z) = | — /2™ [~2a /

(1 — e 2™ 1t 4 ],

tg

where 15 = 0 or 5 = —00 according to z € (—oo,—2} or x € (—2,0} U (0, o0).
So, its phase portraits are like Foy, Egs or Fyg of Figure 4.2, according to
m>1,0«<m<lorm<.

System {IV.e.3). In cocrdinates x; = maz, y; = my, it writes in the form
=y, y=+x+by+ zy, where b > 0. Supposec the plus sign in this system.
Then the origin is a saddle. By Lemma 3.4 the singularity at infinity is the
union at an elliptic sector with a hyperbolic one and the infinity is formed, in
its neighbourhood, by two separatrices. By the Poincaré’s index Theorem and
Theorem 5, the singulanty of type § is a node. Se, the phase portrait of the
system is given by hy; of Figure 3.4.

Assume now the minus sign in the system. If & = 0 its solutions are
833_22"'2(?; — 1} = k. So, its phase portrait is like Ey7; of Figure 4.2. When
& > 0 let ¥(x,y) be the funtion eye'rzn(y —1). Then V(z,y) = Vot + Vy5 =
= by?e-"'e_"b_'z"2 = 0. Therefore, its phase portrait is given by Fi; of Figure 4.1,
In this picture, the origin is an unstable focus or node according to 0 < b < 2
or b > 2, respectively.

System (I1l.e.1l) with rn = 0,£ = b. This system has the expression z =
=y + 2%, i = £z + by + bz?. In the coordinates #y = bz — y, ¥, = 2 it writes
ke © =y, ¥ = +z + by + ny?, with n #£ 0, and in the new variables 2, = nz,
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y, = ny it converts into # = y, ¥ = +x + by + y%, where we can assume that
& > 0. By Lemma 3.3, this last system with the plus sign has a phase portrait
homeomorphic to A;;3 of Figure 3.4.

If we consider this last system with the minus sign (the Liénard's system of
degree two, see [LMP)) then, the function V{(z,y) = e 2%(z? — 42 + 1/2) is
such that ?(x,y) =V, +V,§ = —2by?e~2* < 0. So the phase portraits of this
system with the minus sign are homeomorphic to Eag or Ejg of Figures 4.2 or
4.1 respectively, according to & = 0 or b # 0. Note that if ¢ < b < 2 the origin
is a focus.

Case B. We subdivide these sysiems into the following subcases:

(B1) Systems (B} with an elementary finite singularity of index 1 or —1.
(B2) Systems {B) with an elementary finite singularity of index 0. We
separate them into:
{B2.a) Systems (B2) where indices of the infinite singularities are (1,0, 0).
{B2.b) Systems { B2} where indices of the infinite singularities are (1,1, —1).
Now we begin the study of these subcases.

Case (B1). In this case, since it is very easy to do a study of all topological
possibilities for the phase portraits of these systems, we summarize the results
in the following two lemmas, which are given without proof. To prove them
use the Poincaré-Hopf Theorem.

Lemma 4.1. The phase porirait of a Q51 with three elementary infiniic

critical points and the finite point of saddle type is homeomorphic to one of the
phase poriraits of Figure {.3.

29 : 30

Figure 4.3. Phase portraits of systems {B1) with a saddle point as finite
singularity.

Lemma 4.2. The phase porirait of a Q51 with three elementary infintte
critical points, the finite critical points of indez +1 and without periodic orbits
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is homeomorphic to one of the phase portrails of Figure §.4.

31 E n E

k¥ 33

Figure 4.4. PPhase portraits of systems (B1) with a point of index 1 as finite

. singulanity.

Note that 1 this classification we do not consider the case in which the origin
is a topological center because, by the results of Vulpe [V] we alrcady know
that there is only five different phase poriraits of @51 with a center. In fact
two of these phase portraits have been already obtained in Section 2 (I}, and
L, of Figure 2.1}; and in Figure 4.2 we have two more phase portraits, Ey; and
E3s. The remainder case will appear in Figure 5.7.

Now we must find ¢251 that have the phase portraits of Figures 4.3 and 4.4.
Most of cases of Figure 4.4 will appear when we study the @S1 that can have
limit cycles and so we will posipone this problem for the following section. The
realization of cases of Figure 4.3 Is given in Table 4.1
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Sysiem with haz the phase portrait
(ff.e3)|b=1m>0,d>0 Eag
({f.el1} | a=t.d<o,n<0 Eazg

Table 4.1. Realization of the phase portraits of Figure 4.3.

Case (B2.a}, By Theorems F and 5, we know that we only can have indices
(1,0,0) at infinity when the singularities at infinity are of type (E, 5, 5). Soin
this case we only must study the systems (VIII.5.1) and {IV.5.1).

System (VIILs.1). In coordinates z; = z, y; = ny its expression is given
by = =z, y = £2% + mzy + y* where m? — 4 > 0. If £ # 0 then we can assume
that m > 0 (by taking x; = —=z if necessary}. By Theorems F and §, we obtain
that the finite singularity is a saddle-nede and the infinite singulatifies have
indices (1,0,0). Note that 2 = 0 is an invariant straight line.  we consider
the straight lines y = m,x where m, are the slopes of the infinite singularities,
by Proposition 3.2 and Theorems E and 5, we obtain that its phase portraits
are Fa7 and Eyg of Figure 4.5 according with £ > 0 or £ < 0, respectively.

Figure 4.5. Phase portraits of systems (B2.a}.
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If £ =0, in coordinates T3 = may, y2 = ¥ we obtain that its expression is
& =z, § =2y +y°. In this case z = 0 and y = 0 are invariant straight lines
and it is easy to verify that its phase porfrait is homeomorphic to Fag of Figure
4.5.

System (IV.s.1). In coordinates ; = z, y; = ny, t; = ¢ the equations of
this system are & = y, ¢ = y + £z + mzy + y® with m? —4€ > 0, £ £ 0. The
finite critical point is always a saddle-node whose separatrices approach to it
in the directions of 4 = 0 and y = z. The infinite critical points are always a
node and two saddle-nodes (by Theorems E and §). If we consider the vector
field on the straight lines x = 0, y = 0, y = myz, y = myz where m; and m»
are the slopes of the infinite critical points, with my > m2, then by Proposition
3.2 we can prove that the phase portraits of these systems are homeomorphic
to Fge ff>0and m > 0; to E37, E43, Eis, By, Exq it €& > g,m<f and
mg > 1,mp=1,m; >1>my, m =1, my <1, respectively; and to Eyy, Eys
or Fy3 of Figure 4.5 £ < 0 and my < I, my = 1 or my > 1, respectively.

Case {B2.b}. Instead of studying the systems cases by case we will do
a topological classification of all the possibilities, and after we will find these
phase portraits.

Lemma 4.3. The phase portrait of ¢ QS1 with three elementary infinite
critical points of indices {1,1,—1) and a finite critical point of saddle—node
type is homeomorphic to one of the phase portraits of Figure 4.6.

Figure 4.6. Phase portraits of systems {(B2.5).
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Proof: By making a linear change of coordinates plus a translation we can
assume that the expression of the @51 is given by z = Lz + Mzy + Ny?,
¥ =y 4 €22 + may + ny?. If L # 0 we can assume that L = 1 and £ is either 1
or 0 {in coordinates z; = Lz and either y; = L?y/€ or y1 = y, respectively). If
L = (0, since the origin must be a saddie-node, M must be zero and we have
& = Ny?, ¢ = y + €z + may + ny?; again we can assume that N = 1 and
either £ =1o0or £=10. Hence, since L =10z, L =0 and N = 1, we have that
the phase portrait in a neighbourhood of (0, Q) of our 51 is one of the phase
portraits given in Figure 4.7 where we have represented also the vector field on
the axes.

ﬂff!‘!‘f A I )
! ’

T 8T

£=1, N >0 (1) =1, N=0 (c) 2=1, 8 <0
m 4 3
TS 7 B
3
_ -
£=0, N>0 {e) £=0, N=0 (f) £=0, % <p

Figure 4.7. Possible local behaviours of a saddle-node.

Now, we shall study every one of these cases, taking inte account that the
indices of the infinite singularities are (1,1, —1) and by using Proposition 3.2
Consider for instance case {a). By Proposition 3.2 there are no critical points
at infinity for our system on the directions given by the straight lines = 0 and
y = 9. Since there are exactely three inifinite singularities and by taking the
vector field on the axes we have that this case can be divided into the following
two subcases:

{al) The @51 has an infinite singularity in the first quadrant and it has
two mfinite singularities in the second one.
{a2) The Q51 has three infinite singularities in the first quadrant.
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We study now the subcase {al). The o~limit of C) must be p’ (see Figure
4.8). Hence the w-limit of C3 is r. The w-limat of C3 can not be r’ because this
point could not have hyperbolic sectors {lock at the vector field on the straight
line »'or) and by consequence the w-limit of €y is p. The point ¢ must have
a stable separatrix of two hyperbolic sectors (this is because the points with
w-limit either p or r in the interior of the closed curve opgrp are open sets).
Hence ¢' also must have an unstable separatrix, and the phase portrait is the
one of Figure 4.8 (i.e. it is Eyg of Figure 4.6).

Figure 4.8. Phase portrait of a system {B2.5) when it satisfies the hypoth-
eses (al).

If we use the same kind of arguments for the other cases and subcases we
obtain Eyy, Fys, Esg, Fy7, and Ejg of Figuze 4.6 for the subcase (a2} of Figure
4.7, Es9 of Figure 4.6 in the case (e}, and there are no possible phase portraits
for the remainder local behaviours of Figure 4.7, B

In order to find {251 that have the phase portraits of Figure 4.6 we consider
system (II1.s.1). It is easy to show that this system when £ = 0, n < 0 and
m > 1 has phase portrait Es of Figure 4.6. In order to obtain all the other
cases we shall study system (I77.s.1} under the condition £ > 1. The phase
portraits that we shall obtain are summarized in Table 4.2,
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Bystem with has the phase portrait
({I1.5.3) | a>0,y_ <—min<yy Faq
(fIf.s.1) n>»0, —min=yy E3s

n>{, and {or some Ess
(fI7.9.1)] vatues of £,m 1 uch Eyz
that —m/fn>yy Eqs
(fii.s.1} A<l =0, m>1 Eag

Table 4.2. Realization of the phase portraits of Figure 4.6.

Consider system (J11.s.1) with £ > 1, thatis 2 =y + 22, g =y + €=2® +
+may+ny?, withn # 0, m?—4n(f-1) < 0, (m—1)*—4nf > 0,and £ > 1. The
finite critical point is a saddle-node with critical directions y = G and y = =.
The critical points at infinity are a stable node in the {0, 0) of the local chart U3,
a saddle point on the point of U) corresponding to the direction of the straight
line y = y4+, and a stable node corresponding to the direction of the straight
liney = y_z where 1 < y_ < yy and yy = (—(m—1)£((m—1)2—4nf)1/2/(2n).
The straight line y = yyz +(y% —y4 }/(m +2ny4 ) is an invariant straight line if
¥4+ = —m/n and a straight line without contact if y; # —m/n. This fact allow
us to determine that the phase portraits for our system when y_ < —m/n < y4
(resp. —m/n = y4} is homeomorphic to Ej4 (resp. Fy5) of Figure 4.6. When
¥4 < —m/n we have that only the three phase portraits Fyq, F47 and FEyg are
topologically possible. Note that in the space of parameters £, m, n, the subset
K={tmn)eR:£>1,m?—4n(f—1) < 0,(m—1)2 —4nf > 0} is a connex
set. So if we find two values of (£,m,n) € R such that the phase portraits of
their associated systems are E;s and Eyg we will have proved that the phase
portraits Egg and Ey7 exist some values of {€,m,n) belonging to K.

Two points of A that have the phase portraits E;3 and F,s are, for in-
stance, k£ = (2.256, —2.8,1.6) and (4, —2,1/2) respectively. In order to prove
that the phase porirait associated to the point & € A s £y we can consider
the vector field on the straight line y = /2 (see Figure 4.9).
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= 2—
y=y x+{y] v, /{m+2ny )

y=x/2

Figure 4.9. This @51 has the phase portrait Es of Figure 4.6.

Case {C). We subdivide these systems in the following subcases:
(C1) Systems {C) with the elementary finite singularity of indices £1.
{C2) Systems {(') with the elementary finite singularity of index 0.

Case {C1). We do the same study that in the case (B) and we obtain
the following resuit.

Lemma 4.4. (i} The phase porirati of ¢ QS1 with elemeniary infinite
critical points and the finiie critical point of index +1 and without periodic
orbits 13 homeomorphic to one of the phase poriraits of Figure 4. 10,

(i) There are no QS1 with fwo elemeniary infinite critical points and o
finite crifical point of indez —1.

Note that (ii) of the above lemma follows from the Poincaré~Hopf Theorem
and Theorems F and 5.

The realization of some phase portrait of Figure 4.10 will be done in the
following section. In fact not all the phase portraits of this Figure will exist for

QSi.
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Figure 4.10. Possible phase portraits of systems (C1). We shall prove in
the following section that not all these pictures are realizables for QS1.

Case {C2). The following lemma and table are equivalent to Lemma 4.3
and Table 4.2 of Case (B2.b).

Lemma 4.5. The phase portrait of a QS1 with two elementiary infinite
critical points and a finile critical point of saddle-node type is homeomorphic
to one of the phase portraits of Figure 4.11.

Proof: By using the same arguments that in the proof of Lemma 4.3 we
obtain Figure 4.7. Now, we must consider all the possibilities taking into ac-
count Propositien 3.2, These possibilities are showed in Figure 4.11. Cases (b},
(¢}, (e) and {f) of Figure 4.7 give no possible phase portraits. Case (d} gives
the phase portraits Fgs and Egs of Figure 4.11 and the remainders follow from
case {a) of Figure 4.7. B

The phase portraits of Figure 4.11 can be realized by studying systems
(11.5.13) and (I11.5.3). The results obtained are summarized in Table 4.3 and
the way to study system (II].5.3) whenn > Qand m < —1 or when n < 0



240 B. COLL, A. GASULL, J. LLIBRE

and 1 > m > —1 is equivalent fo the way in which we have studied system
(I11.5.1), to realize case {B2.b). "’

When n < 0, if we consider the phase portraits of the @51 .associated to
the points (£, m,n) = {—{m — 1)?/1.2),m, —0.3) we have that they are homeo-
morphic to Fs7 when mi = —1 and to Egs when m = 0.8, The study when
n > { is similar. Furthermore we can consider 1t like the boundary of system
(II1.5.1) studied in case (B2.8) and for the values n = 1.6 and m = —2.8 (that
are the same values considered in the study on systems (I[[:5.1)) its phase
portrait is homeomorphic to Egs of Figure 4.11.

Syztem with haz the phase portran
(If7.5.3) n<l, m—1 Egs
(F11.5.3) n<h, m=-1 Esy

n<d; come values_ Eus

(If1.33)| of —1<m<1 Esg
Ego

({1783} n>0, —1<m<l Eqy
(If7 5.3} nxl, m=—1 Ega
7t >0 some values Egs

(111.9.2) of m<—1 Ees
Egs

{f1.5.13} —_ Egg

Table 4.3. Realization of the phase portraits of Figure 4.11.
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£ &

©

56

Egg
E

62

S)
wofes

Figure 4.11. Phase portraits of systems (C2).
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5. Phase portraits for QS1 that can have limit cycles

Before a study case by case of the phase portraits of the @51 that can
have limit cycles we shall give their expressions in a more suitable way.

Theorem 5.1. A QS1 that can have himit cycles can be writen in one of
the following formas:

(o) &=y, 1 =—x+by+ay+ny® withn <0;

()i =y+z% g=—2+by+(£+ 5%+ may with £2 —4m < 0 and
£+ b<0. Furthemore, if m =1 then £ + b+ (;

(c)i=ytay, § = —z+by+tmay+ny? withm < 0, (b—-m)2—4n < 0;

(d)} 2 =y+peidzy, y = —z+by+{€+bp)a? 4 {m+bay with p > 0,
£=-1,m=90;

(e} =y+pz’+tzy, y=—z+by +{{+bp)a® +{m+b)zy withp > 0,
(1+8)? —4pm < 0.

Proof: By Section 4 and Table 1.17 we must consider only cases ([.e.4},
{(1.e.5), (1.e.6), (I1.e1),([1.e9), {({I]lel) withm # 0, (II].e.2) and ({V.e.1},
with a focus or a center at the origin, see Proposition 1.9. Note that the systems
(I1.e3), (I1.e4) and (I1.e.5) of Table 1.17, have the unique finite singularity
on the invariant straight Iine z = 0, so they can not have limit cycles.

System {IV.e.1) in coordinates ©; = —min|z/n, n = my, t; = —|n{t/m
writes in the form (a).

System (II].e.l) with m # 0 and (I1l.e.2} write in the form (b), putting
£4binstead of £, and taking the variables ¥, = —z, y; = ¥, t; = —1 if necessary.

We can assume that @ = m = 1 in systems ([].e.1) and ([f.e9). In
the new coordinates v1 = —(z + d)/d, y1 = y/d'/?, t; = d*/%t, they write like
T =y4ay, §=—z+(b-dy/d/? —d?zy+ny® with dn # 0 and b —4nd < 0.
Putting b instead of (b — d)/d*/? and m instead of —d*/? we obtain (c).

Systems (I.e.1), (I.e.2) and {I.e.3) with a point of index 1 at origin and
in coordinates ©; = &, y3 = y/{—a)/?, t; = (—a)/?t, write like & = y —
—(—a)*2? +ay, § = —x+by+22? +may, where either (a+b+ )2 —4a(f4m) <
0, ot b =m, a = £+m < . Taking the new coordinates zy = z, y1 = —¥,
t1 = —t and putting p, b, £ + bp, and m + b instead of (—a)'/?, —b, £, and
—m, respectively; we obtain case (e) for the first condition and case (d) for the
second one. W

From [L] or Appendix B of [CGL| we can give Table 5.1 that provides the
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focal quantities Wy, W, and W; for systems of Theorem 5.1.

System {u) (b} &3] {d} (e)
W —n»B | —¢(24m}>) | —mn >0 |3p>0 p{1—28—mt
Wy it W=0 - ) - - Ep(2ptmi(3p—mi{pm—1L)
W it Wi=Wo=01 . 0 - - 16p°8% (3p° =) >0

Table 5.1. Focal guantities for the @51 of Theorem 5.1.

Proposition 5.2. (i) Systems {a), (b}, {d) and (e} of Theorem 5.1 are
semicomplete families of rotaied vector fields (SFR) with parameter b, (mod.
y=0), (mod. y+a? =0), (mod. y+pz® +zy = 0) and (mod. y+pz? +zy =0},
respectively (see for definitions [Duj and [Pl) or Appendiz D of [CGL]).

(i) System {c) of Theorem 5.1 1s SFR wntk parameter b, {mod. y =0) in
the half plane 1 + z > 0, and x = —1 is an invariant straight line for the flow

of (c).
The proposition follows easily by direct computations.

Theorem 5.3. {see the proof in the Appendix}. Systems (g}, (b), {¢) and
(d) of Theorem 5.1 have at most one limt cycle.

System (e) of Theorem 5.1 under condition (m +b—p)* —4({ +bp) <0
has at most one himit cycle.

Corollary 5.4. Systems (o), (4), (c) and (d) of Theorem 5.1 have ne
limit cycles when b < Q or b 2 b*, where b* is o positive funclion of the other
coefficients of the above systems. Furthermore b* < 2.

Proof: From Table 5.1 it follows that W), > 0 for systems (a), (b), {¢) and
{(d). Then, we know that for cur systems, a stable limit cycle rises from the
origin when b = {. By Proposition 5.2 our systems are SFR with parameter b.
Hence, we can apply Theorem D! of Appendix D of [CGL|. Furthermore, in
these cases, by Theorem 5.3, we have that there exists at most one limit cycle
for all values of &. Then we know that the limit cycle that appears from the
origin when b = 0 grows with b Since (0,0) is the unique singularity of our
systems, these limit cycles must disappear in an infinite separatrix cycle for
some value of &, called &*. Of course * < 2 by Proposition 1.9. Hence, by the
property of non intersection of the limit cycles of SFR the corollary follows.
Note that we have not taken into account system {B) with Wy = 0, since for
this system we know, by Table 5.1, that W, = W, = 0 and hence the origin is
a topological center when b = 0. By consequence it has no limit ¢ycles when

b#£0. W

Now, we shall give the phase portraits of systems of Theorem 5.1 case
by case (without taking into account if some phase portrait has been already
appeared in previous sections).
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System (a}. For this system the behaviour in a neighbourhood of infinity
is always the same. Note also that the siraight line y = 1isinvariant ifb4+n =0
and i is without contact if b+ n #£ (0. Now we show that if b+ n 2 0 system
(a) has ro limit cycles. First, we consider the vector field (a) multiplied by the
factor 1/{1 —y) in the halfl plane y < 1 in which limit cycle can exist. Then we
have

—(y/(l y)) + —(—'r +(by +ny®)/(1—y)) = b+ 2ny —ny®) /(1 —y)? 2 0

and by Bendixson criterion (see [L, pp. 238]), we have that system (a) has no
limit ¢ycles.

In [R] there is a numerical determination of the curve b (n) for which the
limit cycle disappears. Our results plus these numerical results are showed in
Figure 5.1. In short, the phase portraits of system (a) are drawn in Figure 5.2

1 NV VNN
b region wlthout \ \
limit cycles obtained analytically
5 \\ \ \ A T S S S W
1\
b*(n}
7 > : » 1nl

Figure 5.1. Numerical results obtained in [R] that show the values &*(n)
for which the limit cycle of system (a) disappears.
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b*< b <-n b=-n b>»-n

Figure 5.2. Phase portraits of system {a) of Theorem 5.1.

System {b). From Figure 3.2 we have that the behaviour at infinity of
system (b) can be of four different forms according with m > 2, 1 < m < 2,
m=1lor0a<m«l

The following lemma has a similar proof to the proof of Lemma 20 of

[CGL.

Lemma 5.5. Sysiem (b)) with |b] < 2 satisfies the following properiies:

(i) The straight hine y = b2 + 1/m is nvariant if b+ £ = 0 and
without contact of bm + £ # 0.

(i1) If m # 2,4 the parebola y = (m — 2)}/22% — Qu — (Q* — b@ — 1)
where @ = (bm + 28)/(m — 4} is a trajeciory of system (b) if QG =5b IfQ #b
it 13 wnthout contact.

(iti} The parabola given in (it} when (3 = b is ¢ separairiz of the
singularity (0,0} of the local chart Uj.

In short, by Lemma 5.5, Theorem 5.3, Corollary 5.4, the behaviour at
infinity and the properties of the families of rotated vector ficlds we obtain
Figures 5.3, 5.4, 5.5, and 5.6 (in all these figures it 1s assumed that £ < 0 to
clarify the evolution). The figure 5.7 can be obtained integrating the system

(b).
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S < <

b <0 0 <k <-£/m be-£ /m b>=£/m

Figure 5.3. All the possible phase portraits of system () of Theorem 5.1
when m > 2 and the origin is not a topological center.

b= /2 -£/2 <b <-£/m =-£/m -#£/m<b 41‘)5
<
A ’
= o
b=b5 b )b;

Figﬁre 5.4. All the possible phase portraits of system {4} of Theorem 5.1
when 1 < m < 2 and the origin is not a topological center.
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QY

0<b«<-2/2 b=-£/2 b>-£/2

Figure 5.5. All the possible phase portraits of system (b) of Theorem 5.1
when m = 1,

0 <b<-£/2 b==-£/2 b>-£/2

Figure 5.6. All the possible phase portraits of system (&) of Theorem 5.1
when 0 < m < 1 and the origin is not & topological center.

Figure 5.7. Phase portraits of system (b} of Theorem 5.1 with £ =b= 0,



248 B. COLL, A. GASULL, J. LLIBRE

System (c). This sytem has the straight line 2 = —1 invariant. By
Theorems E and S we can study the behaviour at infinity and we obtain three
different cases according with 0 < n < 1, n =1 and n > 1. By using the same
techniques that in the above case we obtain Figures 5.8, 5.9 and 5.10.

Systems {d) and {e). First we study the behaviour at infinity of these
systems and we obtain the different possibilities showed in Figure 5.11. These
possibilities depend on the sign of A = m + b+ p and on the number of infi-
nite singularities. Note that if systems (d) and (e) have two or three infinmte
singularities then 4 # 0.

We can prove that if A < 0 then b < —2 and hence the origin is a stable
node. This fact implies that in this case the phase portraits of systems (d} and
{e) with two or three infinite singularities are one of the pictures of Figure 5.12.

For system {e) we can give a result similar to Corollary 5.4,

Proposition 5.6. System (e) under conditions (m+b—p)? +4(£+bp) <0
and with b < 0 has no limit cycles.

Proof: From Theorem 5.3 we know that system (e) under the condition
(m+b—p)? +4(£+bp) <0 has at most one limit cycle. Furthermore by looking
at Theorem A5 of the Appendix we can affirm that it can exist only when & # 0
and it is hyperbolic. Note also that system (e} has one (resp. two) singularities
at infinity if (m +b— p}® + 4(£ + bp} < 0 (resp. = 0). So, if system (e} has one
infinite singularity, by Figure 5.11 and the hyperbolicity of the limit cycle the
result follows studying the stability of the origin. Now, we consider the case
in which {e} has two infinite singularities. This case is the boundary of the
above one. Note that if the limit cycle would exist, by Theorem Ab it would
be hyperbolic and hence it would persist by changing € by £ + ¢, with ¢ < 0, 1n
system {e). In short, it does not exist. W

By Proposition 5.6 and the above results we obtain that when systems
{d} and (e} have a unique infinite singulanty their phase portrait are the ones
showed 1in Figure 5.13.

The phase portrait of system (d) will be now determinated by using these
last results, the properties of the SFR, and the results Section 7 of [CGL]
{after taking a suitable change of coordinates). Note that the number of infinite
singularities is three, two or one according with {b+p)* —4 > 0, = 0 or < 0,
respectively. The phase portraits of system (d) are showed in Figure 5.14.
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7
N
b <0

b >0

Figure 5.8. Phase portraits of system (¢} of Theorem 5.1 when 0 < n < 1.

/_7
. @
L)
S
b <0

b >0

Figure 5.9. Phase portraits of system {c) of Theorem 5.1 when n = 1.

b >b*

Figure 5.10. Phase portraits of system (¢) of Theorem 5.1 when n > 1.
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Figure 5.11. Phase portraits at infinity for systems (d) and (e) of Theorem
51 ,where A=m+b+p.

Figﬁrc 5.12. Phase portraits of systems (d) and () of Theorem 5.1 with
two or three infinite singularities and m + b+ p < 0.
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©

NN ey AL e,

b =0 b>0

Figure 5.13. Phase portraits for systems (d) and (¢) of Theorem 5.1 and a
unigue infinite critical point.

b>p*

Figure 5.14. Phase portrait of system (d) of Theorem 5.1 { in this figure
it is assumed that 0 < p < 2, in general the limit cycle can appear in pictures

with (*)}
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The remainder case () is the most complicated one. By results of [B], if we
take a system (e) with the conditions W) = Wy = 0 and W3 > 0 we can modify
its coefficients in order to obtain a Q51 of type {e) with at least three hmit cycles
surrounding the (0, 0). Examples of QS for which three limit cycles appear from
a weak focus are given in several papers, see for instance [Che], [P2], [Sh]. In
order to give a dynamic interpertation of the more complete evolution of the
phase portraits of this system we will fix the values of p and m such that
—142(pm)** > 0 and m — p < 0 {the other cases are similar and they give no
new phase portraits). Hence we have that —1—2(pm}*/? < £ < —1+42(pm)*/%.

The number of infinite singularities is three, two or ome according with
£ > B ={(-b*=2p+m)—~{m—p?)f4, € = B or £ < B, respectivaly.
Furthermore, if £ = —bm the straight line ¥y = bz + 1/m is invariant by the flow
of system (e).

In Figure 5.13 we represent the plane of parameters b, ¢, the conditions of
number of singularities at mmfinity, and the existence of an invariant straight
line when £ = —bm. There are some regions for which the phase portraits are
already determined using the above considerations. These results are summa-
rized in Table 5.2. In this Table there are some new phase portraiis that have
been obtained by studying the vector field (¢) on the straight lines y = b +1/m,
and ¥ = iz + {y? — byy + 1}/(m + b — yy ), where y; is the slope of the direc-
tion associated to the lower singulanity at infinity in the local chart Uy, Also,
we have taken into account that system (e) under condition & = —bm can be
written hke system {c), transporting the invariant straight line to z = —1. All
1ts possible phase portraits are showed in Figure 5.18.

z
“iezipm M
—
| N .
I 4
1
®, . Ly !
1} L}
r L}
1
L} 1
i
R P |
By 1 s ,
, : ? , Rg
: A\ pre
; " 1
. : 2=~pm 'l
(- X 2 »
m=g '
t-e , 5 .
. L}
yi -
Rs'/ i ipmii/ 2

Figure 5.15. Plane of parameters b and £ for the system (&) of Theorem
5.1 when m and p are fixed and such that —1 —2(pm)*/? < € < —142(pm)*/?,
and m — p < 0. Here B = (§* — 2(p + m)b — (m — p)?}/4.
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W,

f=-bm, b<m-p £ > -bm, or f=-bm, b>n-p
-

{this case gives the pictures)

Y

N
D)
S 3 .

€y2 13 14

Figure 5.16. Possible phase portraits for system (e} different from e, 2, €3
and ¢4 of Figures 5.12 and 5.13. The simbol - is defined in Figure 3.1. The
symbol [J denotes that we do not know the stability of the grafic. In picture
ez we do not know either the number of limnit cycles.
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Note that, at this moment, the realization of most of cases of Figures 4.4
and 4.10 have been already done in the study of systems (a), (b), (¢}, (d) and
(e). The results obtained are in Tables 5.3 and 5.4.

Phase porirait | Region
£1 R;
€a i
ey R,
ey Ry
113 Ra
£g Lq
er Ly

Phase portrait j Region
L] Ls,Rs
A Ly, Ry
€10 Lo
€11 Py
€12 Lj
E1a *
E)g H

Table 5.2. Realization of some phase portraits of Figures 5.12, 5.13 and
5.16 by system (e} of Theorem 5.1. The regions Ry, L;, and P; are given in

Figure 5.15.

System of Thearem 5.1

has the phase porirait

(&) with 6> —n

Eay

(&) with b= —n

Eas

[a) with " <b<—m

Eaa

{a) with b=b"

ES-i

{c) with b=b",n>1

Eas

{a} with <0

Eae

Table 5.3. Realization of the phase portraits of Figure 4.4.

Syztem of Theorem 5.1

has the phase partrait

{d) with b=—2—p

Eson

fc) with b<B,m=1

Bgy

{c) with b=2—p

Eyz

?

ESG .E.‘n‘i -E.':S

Table 5.4. Realization of some phase portraits of Figure 4.10.
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In short, from all the results that we have obtained since now, the problems
that we do not have solved yet, in order to find all the possible phase portraits
for 51, taking into account its number of limit cycles, are the following:

(P1} Determine the maximum number of limit cycles that can have
phase portraits es, e, eg and e of Figure 5.16.

{P2) Determine if there is some 51 with phase poriraits e;3 and
ey1 of Figure 5.16 (Note that this problem is equivalent to the problem of
determining Q51 with phase portraits Fys3, Ess and Ess of Figure 4.10).

_ We do not solve problem (P1). We koow that there are some @5 with

these phase portraits with at least three limit cycles, but we have not found
" a bound for the number of limit cycles for system (e) of Theorem 5.1 with
condition (m + & — p)* + 4(£ + bp) > 0.

In Figure 5.17 we represent all the information about limit cycles that we
have for system {e). The zone dotted represents the zone for which a limit
cycle appears from the origin, This information will be useful in order to give
a partial answer to problem (P2).

no limit cycles no limit cycles

N\

exactly cne limit cyele ’%1 —\\\f“ ne limit cycles

at mosT one limit Cycle

4£
no limit cycles point with Wy=0(L=p/(2p-m)> 0)

/////////77

ta

Figure 5.17. Knowlege about limit cycles for system (e) of Theorem 5.1 in
the space of parameters £, 5.
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Lemma 5.7. Phase porirast €4 of Figure 5.16 is not realizable for S1.
Furthermore of picture e1z of Figure 5.16 i3 realizable, it 15 the phase porirait of
some system of type (e) of Theorem 5.1 with condition {m+b—p)2+4(€+bp) = 0.

Proof: Note that the two infinite critical points of a (251 that has phase
portraits e;3 or e;4 must be of type §. There is a few number of cases such
that they have these kind of points at infinity: {I.e.6}, (I.5.9), (I1.e.5), (I1.c.9),
{II.s.8)and (II.5.13). The cases {I1.e.5), {I1.5.13) and ({1.5.8) with condition
{E) have an invariant straight line through the origin. The finite critical point
of systems (II.s.8) with condition (D) and (1.5.9) with £ 4+ 5 £ 0 is a saddle~
nede. The phase portrait of system (I.5.9) with condition (D) and £+ b5 =10
can not be €3 or ey4 (look at the vector field on the straight line y = 0 which
is without contact and study the infinite singularities). The case (I1..9) has
been already studied. So the unique case that can have phase portraits e;3
or ey4 is {I.e.8). This case is equivalent to system (e) of Thecrem 5.1 with
condition (m + & — p)? + 4(£ + bp) = 0 and to system (d) of the same theorem
with condition (b — p)? — 4 = 0. The second one has been alrcady studied.

So, in order to prove that the phase portrait €14 is not realizable for 51,
we only must consider case {€) with condition (m + & — p)}* + 4{£ + bp) = 0.
By Proposition 5.6 we know that this phase portraif is not realizable for & <0,
When & > 0, we can prove also that phase portrait e,4 Is not realizable. In
this way consider Figure 5.17 and use the same argument that in Section 7 of
[CGL). Note that we can not utilize the same argument in order to prove that
phase portrait e13 is not realizable because in this case, system (e) is not 2 SFR
on the parabola (m+6—p)? +4(f +bp)=0. W

Appendix. Theorems on unigueness of limit cycles for Q5.

In this appendix we enunciate some results on uniqueness of limit cycles
for @S. By using these results we will prove Theorem 5.3.

Theorem Al. {see [Y1], [Y2, pp. 269]). Censider the system
{E.1) = —y+4br+lz? +may+ny?, y==z.

Then the following hold.

(D Ifo=0, m{£+n)=0, then (£.1) has e center at (0,0). Ifb=0,
m(€+n} # 0, then (£.1) has no periodic orbits.

(I1) If bm{€ + n) > O then (E.1) has no periodic orbits.

(I Ifbm{f+n) < Cand 0 < [b| < b = f{€,m,n) where f 15 a
function of €, m,n then (E.1} has one and only one hmit cycle, which grows as
|b] increases and becomes @ singular cicle (homoclinic orbit) when |b| = b*. If
|bf = &%, then (E.1) has no periodic orbits.

Theorem A2. (see [Ch]). The sysiem

(E.2) & =—y+de+0z’, §=2z(l+az+by),
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has af most one himit cycle surrounding the origin,
Theorem A38. (see [CZ, Theorem 2|}, Given the sysiem
(E.3) t=ylz+1), §=—z+cy+ax® +bry+ dy

the following hold.
(JHFa>20,¢>0,d>00r-1<a<0,¢>0,d>0,a+d>0,
then it has at most one bimil eyele.
(i) If be(a + d) > O, it has no limit cyeles on the half plane z > —1.

Theorem A4. (see [Z, Theorem 5]). The system
(E.4) t=y+y?, §=-—z+ay+bzy+cy’,
has at most one bimit eycle if b < 0.

Theorem A5, (see Theorem A of [CGL]). If the function

F(z,y)g(z,9) = [(z - by)Palz, y) + yQalz. 9)l[2Q2(z, y) — yPo(x, y)] associated
to the differential equations

(E.B) T=y+ Pz,y}, y=-—z+by+Q:z,y),

does not change of sing then this system has at most one limit cycle that su-
rrounds the origin, and it 1s hyperbolic. Furthermore, when b = 0 1t has no
limit cycles.

Proof of Theorem 5.3: System (a) writes in the form (E.1) with ¢ = n,
m = 1 and n = 0 after interchanging r and y. So by Theorem Al, system {a)
has no limit cycles when either & € 0 or b > §*, and at most one limit cycle
when 0 < & < b” for some 0 < b* = f(n) < 2.

System (b} in coordinates 2, = z, y; = bz — y writes like 2 = —y +
+bx + 2%, § = z(1 + my — (€ + bm)x)} and hence, from Theorem A2, it has at
most one limit cycle.

System {c) is already in the expression (E.3) withc=b,a=0,b=m
and d = n. So, system {c) has at most one limi¢ cycle when & > 0 and has no
limit cycles when b < 0 {note that 2 = ~1 is an invariant straight line for our
system and the critical point is in the half plane z > —1}.

System {d) in the new system of coordinates z; = bz —y, y; = z writes in
the form z =y + y°, § = —z + by — xy + (p + b)y®. So, since the coefficient of
zy is —1, by Theorem A4 system (d) has at most one limit cycle.

The expression of system (e) is like (E.5). So Pi(z,y) = p2? + zy,
Qa{z,y) = (€ + bp)z? + (m + bzy, and hence Flz,v)g(z,y) = 23 (my® + (£ +
+)zy+pz?){L+bp)a? +{m+b—plry—py?) < 0 when (m+b—p)? +4{f+bp) < 0.
Therecfore we can apply Theorem A5, and system {e) with the above condition
has at most one limit cycle. B

New proofs of some of these theorems are recently given by Coppel, see
[C2] and [C3].
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