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Abstract

5 .16 .

QUADRATIC SYSTEMS WITH A UNIQUE
FINITE REST P®INT

B . COLL, A. GASULL, J . LLIBRE

We study phase portraits of quadratic systems with a unique finite singu-
larity . We prove that there are 111 different phase portraits without limit
cycles and that 13 of them are realizable with exactly one limit cycle .
In order to finish completely our study two problems remain open : the
realization of one topologically possible phase portrait, and to determine
the exact number bf limit cycles for a subclass of there systems.

0 . Introduction and statement of the main results

We consider the differential system i = dx/dt = P(x, y), y = dy/dt = Q(x, y)
where P and Q are polynomials of second degree with real constant coeficients,
and x, y, t are also real . We call such systems quadratic systems, QS, for short .
We assume that these systems have a unique finite singularity, and we denote
them by QS1 .

Our goal is to give all the possible phase portraits (modulus homeomorphisms
and changes of the scale of the independent variable t) of the QS1 on the sphere
of Poincaré (see [G] and [S]) . Note that in this study we must take into account
the number of limit cycles that the QS1 can have . This last problem is the
most important difference between this classification and 'other similar works,
see for instante [GLL], [Re] .
We prove that there are 111 different phase portraits for QS1 without limit

cycles . Furthermore 13 of them are also realizables by QS1 that have exactly
one limit cycle ; the phase portraits es , e7 , e 8 and e9 are determinated modulo
their number of limit cycles (see Figure 5 .16) and we do not know if the phase
portrait ei3 of the same figure exists for some QSl . More specifically, to finish
completely our study, two problems have resisted our analysis :

(P1) Determine the maximum number of limit cycles that the QS1 x =
= y+px2 + x y, y = -x+by + (~ + bp)x2 -{- (m + b)xy has with conditions p > 0,
(1 + ~)2 - 4pm < 0 and (m + b - p)2 - 4(~+ bp) > 0.

(P2) Determine if these is some QS1 that has phase portrait el3 of Figure
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We think that the answer for (P1) will be that the system considered has at
most these limit cycles . About (P2), we think that phase portrait e13 will not
be realizable by QS1.
Now we shall give a scheme of the proof of the above results . First at all we

need the following notation :
Let X(x, y) be an analytic vector field, and suppose that the origin is an

isolated singularity. Then, we say that (0, 0) is a singularity of type :
e

	

if the determinant of the linear part DX(0, 0) is not zero,
s

	

if the linear part DX(0, 0) has a unique eigenvalue equal to zero,
h

	

if the linear part DX(0, 0) has two eigenvalues equal to zero and it is
not identically zero .

t

	

if the linear part is identically zero .
We shall use this notation for the finite singularity of the QS1, and the same

notation, but with capital letters when we consider infinite singularities (i .e .
singularities on the equator of the Poincaxé sphere) . When the entire equator
of the Poincaré sphere is formed by critical points we shall say that the QS is
degenerate .

Remember that the singularities of type e or s are called elementary singu-
larities .

In Section 1 we give a classification of all the QSl with a reduced number of
parameters (see Lemma 1 .2) . We subdivide them according with the type of
their infinite singularities . The results are given in Tables 1.1-1 .6 . After, we
prove that several cases of these tables are topologically equivalent . In Table
1.17 we summarize all the cases that we must to study. In Section 1 we give
also the phase portraits for the homogeneous QS that have been studied in
several previous papers (see Figure 1 .1) .

In Section 2 we give an affine classification of all the QS1 that are degenerate
or linear . Furthermore, in Figure 2.1 we give all their phase portraits . Hence,
in the following sections we do not consider QS1 degenerate or linear .

In Section 3 we study the phase portraits for QS1 that have a finite rest
point of type h . We'know that these systems have no limit cycles . By making
a study case by case we obtain that their phase portraits are homeomorphic to
one of the phase portraits of Figures 3.1 or 3.4 .

Section 4 deals with QS1 that have the finite rest point of type e or s,
but that have no limit cycles . The problem is more complicated that in the
above sections because there are a lot of topological possibilities for their phase
portraits, especially when the finite singularity is of saddle-node type . In order
to study these systems we subdivide them into the following these cases :

(A) QSl with some non-elementary singularity at infinity .
(B) QSl with these elementary singularities at infinity.
(C) QS1 with exactly two elementary singularities at infinity.

Case (A) is studied case by case . Note that when the singularity at infinity is
non-elementary there are many topological possibilities . The results obtained
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Cases (B) and (C) are studied in a similar way. First, we consider them with
the finite rest point of index 1 or -1, i .e . subcases (B1) and (C1) . For these
subcases is easy to do a topological classification of all their possible phase
portraits . The results obtained are showed in Figures 4.3, 4.4 and 4.10 . The
realizations of the pictures of these figures are shown in Tables 4.1, 5 .3 and
5.4 . Note that the phase portraits E53 , E54 of Figure 4.10, are equivalent to
the phase portrait e13 of Figure 5.16, Le . i s the one of problem (P2) . When
we consider cases (B) and (C) with the finite rest point of index 0 we obtain
subcases (B2) and (C2). Subcase (B2) with the indices at infinity (1, 0, 0)
is studied case by case and the results obtained showed in Figure 4.5 . The
remainder subcases are subcase (B2) with singularities at infinity of indices
(1, 1, -1) (denoted by B2.b) and (C2). We study them by considering all the
topological possibilities (taking into account also some special properties of the
QS, for instante Proposition 3.2) . The phase portraits obtained are showed in
Figures 4 .6 and 4.11, and their realizations are given in Tables 4.2 and 4 .3 .

In Section 5 we study the QS1 that can have limit cycles . First, we write
them in a more suitable form (see Proposition 5.1) . In this new form, they
are semicomplete families of rotated vector fields (SFR) with parameter b, and
so we have more information about the evolution of their limit cycles when b

changes (see [Du], [P1]) .
In the Appendix we enunciate some results of several papers about uniqueness

of limit cycles of QS. These results allow us to prove the uniqueness of the limit
cycles for all systems of Proposition 5 .1 except the system that we referred to
problem (P1) .
From the results of this appendix, the properties of the SFR and some par-

ticular properties of our QS1, we obtain Figures 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5 .8,
5 .9, 5 .10 and 5.14 that give us the phase portraits of systems (a), (b), (c) and
(d) of Proposition 5.1 . We obtain also some properties about system (e) of this
proposition (see Figures 5 .11, 5.12, 5.13, 5.15, 5.16 and 5.17) .

In this paper we use also some results on weak focus (see [Che] or Appendix
B of [CGL]) and the standard results on the local behaviour of a vector field
in a neighbourhood of a singularity (see for instante [ALGM]) . We will refer
in order to simplify the notation, to Theorems E, S and H when we use such
theorems about singularities with this kind of degeneracy . Sometimes we are
interested in knowing if an invariant straight line through a singular point is
formed by separatrices . We solve this question by using the blow up method .

1 . Classification of the QS with a unique finite rest point

In a first step we need a general classification of all the QS. In this way we
have the following result .
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Lemma 1.1 . (see Lemma 1 of [GLL]) . The quadratic system

dx
x
_

	

_

	

_dy
dt

	

P(x, y),

	

y = dt = Q(x, y)

is afne equivalent, scaling the variable t if necessary, to one of the following
ones:

(I)

	

x= 1 + xy,

	

y = Q(x, y)
(II)

	

x=xy,

	

y = Q(X) y)
(III)

	

i=y+ X2,

	

y = Q(x,y)
(IV)

	

x =y,

	

y =Q(x, y)
(V)

	

i=-1 + x2 ,

	

y =Q(x, y)
(VI)

	

i= 1 + x2 ,

	

y =Q(x, y)
(VII)

	

i=x2 ,

	

y = Q(x, y)
(VIII)

	

i =x,

	

y = Q(x, y)
(IX)

	

x = 1,

	

y = Q(x, y)
(X)

	

x = 0,

	

y = Q(x, y)

where Q(x, y) = d + ax + by + 2x2 + mxy -{- ny2 .

We shall say that an isolated singularity (xo,Yo) of a vector field X on the
plane is a singularity of type :

e

	

if (xo , yo ) is a nondegenerate singularity ;
s

	

if the linear part of DX(xo, yo) has a unique eigenvalue equal to zero;
h

	

if the linear part of DX(xo , yo ) has the two eigenvalues equal to zero,
and DX(xo , yo) jÉ 0 .

t

	

if DX(xo , yo ) - 0.
The singularities of type e or s are called elementary singularities .
We shall denote by (A .a) a QS1 of type (A) whose finite singularity is of type

a, where A E {(I), (II), . . . , (X)} and a E {e, s, h, t} . By using this notation
we can give a classification of the QSl.

Lemma 1.2 . A QS1 is afne equivalent, scaling the variable t if necessary
to one of the following cases :

(a) (I .e)

	

i = y - x2 + xy, y = ax + by + Q2(x, y) with

	

a 7É 0;
(I.s)

	

i = y - x2 + xy, y = by + Q2(x, y) with b q¿ 0;
(I.h)

	

i = y - x2 + xy, y = Q2(x, y)-
(b)

	

(II . e), (II.s) or (II.h) .
(c) (III.e)

	

i = y -I- x2, y = fx + by -f- Q2(x, y) with n = 0 and, either
m :~ 0 and(2-b)2 f4m<0, orm=0 ando=b;
(III.s)

	

i = y+ x2 , y = y + Q2(x, y) with either n :~ 0 and
m2 -4n(~-1)<0,ornqÉ 0,m=0and2=1,orn=0,m7~ 0and
2=1, orn=m=0and27É 1;
(III.h)

	

i=y+ x2 , y = Q2(x, y) with either n

	

0 and m2 - 4n2 < 0,
orn :~ 0, m=2=0, orn=2=0, m :~ 0, orn=m=0, 2q¿ 0.
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(d) (IVe)

	

i = y, y = fx + by -}- Q2(x, y) with b > 0 and Q = 0;
(IV.s)

	

i = y, y = y + Q2(x, y) with £ qÉ 0;

	

-

(IV. h)

	

i=y, y = Q2 (x, y) with Q :~ 0.
(e) (V.e)

	

i=x2 - 1, y = d + by +£X2 -}-mxy with m :~ 0 and d +P :~ 0;
(V.s)

	

x = x2 - 1, y = d + ax + by + 2x2 + mxy + y2 with (b -}- m)2 -
-4(d + a + 2) = 0 and (b - m)2 - 4(d - a + 2) < 0.

Furthermore, we can assume that the singularity of system (V) is on
the straight line x = 1 .

(f) (VII.s)

	

i = x2, y = y + Q2(x, y) with n = 0;
(VII.h)

	

i = x2, y = x + Q2(x, y) with n = 1 .
(g) We split system (VIII.e) finto two subsystems :

(VIII.e l )

	

i = x, y = by + Q2(x, y) with b :~ 0 and n = 0;
(VIII-e2)

	

i = x, y = x + y + Q2(x, y) with n = 0;
(VIII.s)

	

i = x, y = Q2(x, y) with n :~ 0 .
(h) A homogenous quadratic system (i .e .

	

i = P2(x, y),

	

y = Q2(x, y)).
Here Q2(x, y) = £x2 + mxy + ny2, P2(x, y) = Lx2 + Mxy + Ny2 .

Proof.. By Lemma 1.1 we can consider that the QS1 is of one of the types,
from (I) to (X) . Clearly systems (VI) and (IX) have no finite singularities . If
some system has a singularity of type t we can translate it to (0, 0) and so we
obtain (h) . So systems (X) are contained in (h) .

In the case (I), let (xo , yo ) be the critical point of the system . Since xo :~ 0,
in the coordinates x l = -xo (x -- xo), yl = -xo x + yIxo + xó + 1/xó, t r = xot
system (I) can be written as il = yr - xi + xlyl, yi = Q'(xl,y,) . So (a)
follows .

In the coordinates x l = x - xo , yr = 2x ox + y - x2 , where (xo, yo) is the
critical point of system (III), it can be written as i = y + x2 , y = a'x + b'y +
+2'x2 +m'xy+n'y

2
, where we always omit the subscript one and a' = a+2(2-

-b)xo - 3mx0 + 4nxó . If a' ~ 0, then system (III) can be written in the form
(III.e) by using the change of variables xl == ¡a'¡--112x, yr = la'¡ -'y, tr =
la' 11/2t . If a' = 0 and b' :~ 0 then the transformation xr = (b') - 'x, yl = (b')-2y,
t i = b't writes system (III) in the form (III.s) . Lastly, if a' = b' = 0 then we
have system (III.h), and (c) holds .
Without loos of generality we can assume that the singularity is at the origin

for systems (IV), (VII) and (VIII) .
Now, for (IV) we have d = 0. If b = 0 then (IV) can be written as (IV.h) or

(IV.e) according to a is zero or nonzero . If b qÉ 0 and a 7É 0 using the change
of variables x l = bibl-r lal rl2 x, yl = y, tl = blbl -r la1 r /2t system (IV) becomes
in system (IV.e) . If b :~ 0 and a = 0 then the transformation xr = bx, yr = y,
ti -= bt changes (IV) into the form (IV.s) . In short (d) follows .
By using the change of variables xr = -x, yr = y, ti = -t (if necessary) we

can assume that the singularity of (V) is on the straight line x = 1 . Therefore,
if the singularity of (V) is of type e then n = 0 and m = b :~ 0. Now transfor-
rnation x l = x, y r = y + a/m changes system (V,e) finto the form given in (e) .
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If n :~ 0 then the chango of variables x 1 = x, yl = ny, t1 = t cllanges system
(V) into the form (V.s) of (e) .
Making a linear transformation which changos the linear part of systems

(VII) and (VIII) into the canonical Jordan form and scaling the variables (if
necessary), we obtain (f) arld (g) .
Now we shall subdivide the cases given in Lemma 1.2, except case (h), ac-

cording to the kind of singularities that the QS has on the equator of Poincaré
sphere .

For the infinite singularities, we will follow the same notation that for the
finite singularity but with capital letters . If a QS is such that all the points
on the equator of the Poincaré sphere are singularities we shall say that it is
degenerate . The results of all these subdivisions are given in Tables 1.1 - 1.16
below .

Table 1.1 . The singularities at infinity for system (I.e), where
(A) a :~ 0, and (2a+b+~)2 -4a(a+b+22+m) < 0, or a+b+2~+m=

=2a+b+~=0 .
(B) a :~ 0, and (a + b + 2)2 - 4a(Q + m) < 0, or b = m, a =

	

+m < 0.
(C) a :~0,andb+~=0 .

3 (E,E,S) (M+1)2 -49(n-1»0 (I .e .1)

2 (E,H) nSP10,1 £+m+n=0 (m+1)2-4£(n-1)=0,a+by-1 (I .e .2) (A)

2 (E, T) (m+1)2-4£(n-1)=0,a+b=1 (I .e .3)

System 3 (E, E, S) (m+1)2+4£>0 (I .e .4)

(I . e) 1 singularities (S) £+m:F~, 0 (m+1)2+4£<0 (I .e .5) (13)

has at 2 oí type (S,S) it n=0 (m+1)2+4£=0 (Le.6) with

infinity 3 (E,S,S) mil (Le.7)

2 (S,H) £+m=0 m=1,a+bq¿1 (Le.g) (C)

2 (S,T) m=1,a+b=1 (I .e .9)

2 (S,S) n=1 £+m+1=0 m:í 1 -1 (I .e .10) (A)

00 Degen . m=-1 (I .e .11)
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Table 1.2 . The singularities at infinity for systems (I .s) and (I.h), where
(A) a = 0, and (b+2Q+m)2 -4(b+«Q+m+n) < 0 or b+Q = Q+m = 0.
(B) a=0, and b+Q=0or b+22+m=0.
(C) a=0, andb-m=0orb+Q=0 .
(D) a=0, and b+~ :~ 0.
Furthermore, b :~ 0 in case (I .s) and b = 0 in case (I.h) .

Table 1 .3 . The singularities at infinity for system (II.e), where

3 (E;E,E) (m+1)2-4£(n-1)>0 (I .s .1) (I .h .l)

1 (E) £+m+nqÉ0 (M+1)2-4«n-1)<0 (I .s .2) (I .h .2) (A)

2 (E,S) (M+1)2-4«n-1)=o (I .s .3) (I .h .3)

3 (E,E,S) n:00,1 (m+1)2-4£(n-1)>0 (I .s .4) (I .h .4)

2 (E, H) £+m+n=0 (m-1)2-4£(n-1)=0,bqé 1 (I .s .5) (I .h .5) (B)

2 (E,T) (m-1)2-4£(n-1)=0,b=1 (I .s .6) -

Systems 3 (E,E,S) (m+1)2+4£>0 (I .s .7) (I .h .6)

(I .s) 1 (S) £+m5f0 (m+1)2+4£<0 (I .s .8) (I .h .7) (C)

and (I .h) 2 singul . (S,S) if n=0 (m+1)2+4£=0 (I .s .9) (I .h .8) with

have at 3 oí type (E,S,S) mil (I .s .10) (I .h .9)

infinity £+m=0 (D)

2 (S, H) m=1, b#1 (1 .,9 .11) (I .h .10)

2 (E,S) mV--l (I .s .12) (I .h .11)

£+m+17É0 (A)

1 (S) n=1 m=-1 (I .s .13) (I .h .12)

2 (S,S) m96-1 (I.s .14) (I .h .13)

£+m+1=0 (B)

0o Degen . m=-1 (1 . .9 .15) (1 .h .14)

3 (E,E,S) n540,1 mg`0 (II.e .l) (A)

2 (E,H) m=0 (II.e .2)

3 (E,E,S) m2+4£>0 (II.e .3)

System 1 (S) £q¿0 m2+4£<0 (II.e .4) (S)

(II. e) 2 singularities (S,S) it n=0 m2+4£=0 (II.e .5) with

has at 3 oí type (E,S, S) m¢0 (II.e .6)

infinity 2 (S,H) £=0 m=0,aqÉ0 (II.e .7) (e)

2 (S,T) m=a=0 (II.e .8)

2 (S,S) n=1 mgÉ0 (II.e .9) (A)

0o Degen . m=0 (II.e .10)
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(A) b2-4nd<0,£=0,a :~ 0.
(B) a2 - 4Pd < 0, b :~ 0.
(C) Either a = 0, b :~ 0, d SA 0, or a :~ 0, b = 0, d

	

0 .

Table 1 .4 . The singularities at infinity for system (II .s), where
(A) n VÉ 0, ~

	

0, b2 - 4nd = 0, a2 - 4ed < 0 .
(B) n

	

0,

	

0, b2 - 4nd < 0, a2 - 42d = 0, 2U - ma :~ 0 .
(C) n

	

0, ~=0, b2 -4nd=0, a=0, d :~ 0 .
(D)n=0,

	

7É0,b=0,d :~ 0,a2 -Ud=0,m :~ 0 .
(E)n=0,

	

y£0,d=0,b :~ 0,a=0 .
(F)n=0,Q=0,d=0,bqÉ 0,a7É 0.

3 (E,E,E) m2 -4(n-1)4>0 (II.s .1)

1 (E) 1540 m 2 -4(n-1)2<0 (II .s .2) (A) or (B)

2 (E, S) nq¿0,1 m2 -4(n-1)e=0 (II .s .3)

3 (E,E,S) MV0 (ILs .4)

P=0 (C)

2 (E,T) m=0 (ILs .S)

Syste- 3 (E,E,S) m2 +4£>0 (ZLs .6)

(II .s) 1 singularities (S) if QgÉ0 m2+4P<0 (ILs .7) with (D) or (E)

has at 2 ot type (S,S) n=0 m2+4£=0 (ILs .B)

infinity 3 (E,S,S) ~0 (ILs .9)

P=0 (F' )

2 (S,H) m=0 (II.s .10)

2 (E,S) m:;,-'0 (II.s .11)

£540 (A) or (B)

1 (S) m=0 (ILs .12)

2 (S,S) n=1 ~0 (ILs .13)

C=0 (C)

00 Degen . m=0 (ILs.14)
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Table 1.5 . The singularities at infinity for system (III), where
(A) n

	

0,

	

0, b2 - 4nd < 0, a2 - 4Qd = 0, 2U - ma = 0 .
(B) n

	

0,2=0,b =0, a :~ 0,d=0.
(C)n=0,~

	

0,b =0,d :~ 0,a2 -4$d=0,m=0.

Table 1 .6 . The singularities at infinity for system (III.e) .

Table 1.7 . The singularities at infinity for systems (III .s) and (III.h) .

3 (E,E,E) m2 -4(n-1)e>0 (II. h.1)

1 (E) 2q¿0 m2 -4(n-1)f<0 (II.h .2) (A)

2 (E,S) n:p¿0,1 m2 -4(n-1)Q=0 (II. h.3)

3 (E,E,S) MV0 (II. h.4)

e=0 (B)

System 2 (E,H) m=0 (II. h.5)

3 (E,E,S) C>0 (II.h .6)

(II.h) singularities n=0 Py0 (C)

has at 1 of type (S) if Q<0 (II .h .7) with

2 (E,S) m9-60 (II .h .8)

infinity Cho (A)

1 (S) m=0 (II.h .9)

2 (S,S) n=1 m¢0 (II.h .10)

P=0 (B)

00 Degen . m=0 (ILh .ll)

System 2 singularities (E,H) m,-,1 (III .e .l)

(III .e) has

at infinity

1

00

of type (H)

Degen .

if m=1,C7É0

m=1,k=0

(III .e .2)

(III .e .3)

3 (E,E, E) (m-1) 2 -4ne>0 (III .s .1) (III.h .1)

Systems 1 (E) nV-0 (M_1)2 -4n£<0 (III .s .2) (III .h .2)

(III .s) and 2 singularities (E,S) if (m-1) 2 -4ne=0 (III .s .3) (III .h .3)

(III .h) 2 of type (E,H) mvl (III .s .4) (III .h .4)

have at 1 (H) n=0 m=1,20 (III .s .5) -

infinity 00 Degen . m=1,e=0 - (III .h .5)
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System

	

(IV.e)

	

is

	

linear

	

when

	

n=m=0 (IV.e .4)

Table 1.8 . The singularities at infinity for system (IV.e) .

Table 1 .9 . The singularities at infinity for system (IV .S) .

Table 1.10 . The singularities at infinity for system (IV.11) .

Table 1.11 . The singularities at infinity for system (V.e) .

Table 1 .12. The singularities at infinity for system (V.S) .

System

(IV.e) has

3

2

singularities

ot type

(E,S,S)

(E,H) ií

n540 mg¿0

m=0

(IV.e .l)

(IV.e .2)

at infinity 2 (S,H) n=0 m¢0 (IV.e .3)

3 (E,S,S) m2 -4n2>0 (IV.s .1)

System 1 (E) n~0 m2 -4n2<0 (IV.s .2)

(I V. s) 2 singularities (E,H) it m2 -4nI=0,2n+~0 (IV.s .3)

has at 2 0{ type (E,T) m 2 -4n2=2n+m=0 (IV.s .4)

infinity 2 (S,H) n=0 m:p~ 0 (IV.s .5)

1 (H) m=0 (IV.s .6)

3
(E,S,S) m2 -4n£>0 (IVh.1)

System 1 (E) n~0 m2 -4n2<0 (IV.h .2)

(IV.h) 2 singularities (E,H) it m2-4n£=0 (I V.h .3)

has at 2 ot type (S,H) n=0 ~ m:,~0 (IVh .4)

infinity 1 (H) m=0 (IV.h .5)

System 2 singularities (E,T) mil (Ve.1)

(V.e) has at 1 ot type (T) it m=1,P:p~0 (V.e .2)

infinity oo Degen. m=1,P=0 (Ve.3)

System 3 singularities (E,E,E) (m-1)2-42>0 (V.s .1)

(V.s) has at 1 ot type (E) it (m-1)2-4PG0 (V.s .2)

infinity 2 (E,S) (m-1)2-4P=0 (V.s .3)
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Table 1 .13 . The singularities at infinity for system (VII.S) .

Table 1 .14. The singularities at infinity for systems (VII.h) .

Table 1 .15 . The singularities at infinity for systems (VIII.e 1 ) and (VIII.e2) .

Table 1.16 . The singularities at infinity for system (VIII.S) .

In this final classification there are some cases which are afflne equivalent .
Now we shall study these cases .

Lemma 1 .3 . (see Lemma 9 of [GLL]) . For n :~ 0 the system

x = P(x, y),

	

y = d+ ax + by -{- ny2

with a = 0 can be written as

x = x2 + 1,

	

y = Q(x, y)
x = x2,

	

y = Q(x, y)
x = x2 - 1,

	

y = Q(x, y)

System 2 singularities (E,T) mil (VII .s .1)

(VII .s) .has 1 of type (T) if m=1,fq¿0 (VII .s .2)

at infinity oo Degen. m=1,f=0 (VII .s .3)

System 3 singularities (E,E,E) (m-1)2-4nf>0 (VII.h .1)

(VII.h) has 1 of type (E) if (M_1)2-4n£<0 (VII.h .2)

at infinity 2 (E,S) (m-1)2-4nf=0 (VII.h .3)

systems (VIII.e l ) 2 singularities (S,T) m,70 (VIII.e t.1) (VIII.e 2.1)

and (VIII.e2) have if

at infinity 1 of type (T) m=0,£V-0 (VIII.e t.2) (VIII.e 2.2)

Systems (VIII.el) and (VIII.e2) are linear when m=f=0i (VIII.et.3) I (VIII.e2.3)

3 (E,S,S) m2 -4nf>0 (VIII.s .1)

System (VIII.s) 1 singularities (E) if m2 -4nf<0 (VIII.s .2)

has at infinity 2 of type (E,H) m2 -4nf=0,fq¿o (VIII.s .3)

2 (E,T) m2 -4nf=0,f=0 (VIII.s .4)
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according to whether k = b2 - 4nd is negative, zero or positive . . If a qÉ 0 then it
can be written as

x = y + x2 ,

	

y=Q(x, y) .

Remark 1.4 . From this Lemma we need not to study cases (II .e.2), (II .e.10),
(II .s .5), (II .s .14), (II.h .5), (II .h .11) and (IV .e.2) .

Lemma 1.5 . If system (I) (in ¡he form given by Lemma 1.2) scitisfies ~
+m+n = 0 then by a linear change of coordinaies plus a scaling of the variable
t, it can be reduced either to (I) bu¡ fulfilling 2 -}- m+ n qÉ 0, or to another case
of the ones given by Lemma 1 .2 .

Proof. Assume n :~ 0 and 2 + m + n = 0, then the change of variables
x l = -x -I- y, y, = x changes our system to the form x = (-1 + a + b)y + (b --
-1)x+x((m+2n-1)y+nx), y = x+y- fxy . If -l+a+b = 0 and m+2n-1 :~ 0
the new change of variables x l = x, y l = (b-1)+ (m+2n-1)y+nx transforms
it into a system of type (II) . If -1 + a + b = 0 and m -F 2n7- 1 = 0 we have
system x = (b - 1)x + nx2, J = x + y + xy hence, from Lemma 1.3 (after
interchanging x and y) we can reduce it to one of the types (V) or (VII) . If
-1 -{- a + b :~ 0 the change of variables xl = x, y1 = (-1 + a + b)y + (b - 1)a;
write it like i = y + Cx2 + Dxy, y = (-1 -1- a + b)x +y + xy - (b - 1)x2 where
C = n-(b-1)(m+2n-1)/(-1-}- a+b), D = (m+2n-1)/(-1-I- a+b) and we
omit the subindex 1 . If D = 0 and C qÉ 0 the new variables x l = Cx, yi = Cy
transforms it roto a system of type (III), and if D = 0 and C = 0 we have
a system of type (IV) . The case in which D :~ 0 and C = 0 in the variables
xl = 1 + Dx and yl = Dy it is of type (II), and the case in which D q¿ 0 and
C 7É 0 the change x l = Dx, yl = -DZy/C, t1 = -Ct/D converts it into a,
system of type (I) but with n = 0.
Assume n = 0 and P + m = 0. The system becomes x = y - rnx -f- x(-x +

+y-mx), J = (b?n-a-m2)x+ (m-b)y in the variables xl = ?nx-y, x l = x,
after omiting the subindex 1 . If bm - a - m2 :~ 0 the change of variables
yl = (bm - a - m2 )x -f- (m - b)y, xl = y converts it into a system of type (IV) .
If bm - a -m2 = 0, then m - b :~ 0 and with the change of variables xl = y,
yl = x, tl = (m - b)t it becomes a system of type (VIII) .

Remark 1 .6 . From this Lemmms we obtain that the cases from (I .e .1) to
(I .e .3), from (I .e.7) to (I .e .11), (I .s .4), (I .s .5), (I .s .6), (I .s.10), (I .s.11), (I .s .14),
(I .s .15), (I.h.4), (I.h.5), (I.h.9), (I.h.10), (I.h.13) and (I.h.14), are affine equiva-
lent to other cases of Lemma 1 .2 .

Lemma 1.7 . (a) Systems x = x, y = Q(x, y) and i = y, y = Q(x, y) with
n qÉ 0 and m2 - 4n2 = 0 are afne equivalent to some systems contained in
types (III), (V) and (VII).

(b) System x = xy, y = d + ax + by + mxy can be transformed by a linear
change of coordinates into a system of one of the types (IV), (VIII) or (X).



Q S WITH ONE REST POINT

	

21 1

Proof.- In the new variables x 1 = x, yi = y + mx/2n the differential systems
write x = P(x, y - mx/2n), y = d + (2an - mb)x/2n -{- by + ny' + mP(x, y -
-mx/2n)/2n, where P(x, y) is either x or y, and we omit the subindex 1 .
Hence, from Lemma 1.3, (a) follows .

In the variables x l = x, y l = y - mx the system of differential equations
becomes x = x(y + mx), y = d + (a + m)x + by after omitting the subindex
1 . This system can be transformed into a system of type (IV), (VIII) or (X)
according with a + m qÉ0 ; a + m =0, b :~0 anda + m = b = 0 (in this case d
must be zero), respectively. So, (b) is proved .

Remark 1.8 . From this Lemma we do not peed to study the following
cases : (II .e .6), (II.e.7), (II .e .8), (II .s .9), (II .s .10), (IV.s .3), (IV .s .4), (VIII.s .3),
(VIII.s .4) and (IV.h.3) .

So, from Remarks 1 .4, 1.6 and 1 .8 the cases that we must study are summa-
rized in Table 1 .17 .

(1) Degenerate or linear systems :
Degenerate : (III .e .3), (III.h .5), (V.e .3), (VII.s .3) .
Linear: (IV.e.4), (VIII.e l .3), (VIII.e2 .3) .

(2) Neither degenerate nor linear systems :
a) with a critical point of type e .

(I .e .4),

	

(I.e.6) ; (II .e .l), (II .e .3), (II .e .4), (II .e.5), (II .e.9) ;
(III .e .l), (III .e .2) ; (IV .e .l), (IV .e .3) ; (V.e .l), (V.e.2) ; (VIII.e l .l),
(VIII-C2 .1), (VIII.e l .2), (VIII.e 2 .2) .

b) with a critical point of type s .
(I .s .l), (I .s .2), (I .s .3), (I .s .7), (I .s .8), (I .s .9), (I .s .12), (I .s.13) ; (II .s .l),
(II .s .2), (II .s .3), (II .s .4), (II .s .6), (II .s .7), (II .s .8), (II .s.ll), (II .s.12),
(II .s .13) ; (III .s .l), (III .s .2), (III .s .3), (III .s .4), (III .s .5) ; (IV.s .l),
(IV.s .2), (IV .s .5), (IV .s .6), (V.s .l), (V.s .2), (V .s .3) ; (VII.s .l),
(VII.s .2) ; (VIII.s .l), (VIII.s .2) .

c) with a critical point of type h .
(I.h.l), (I .h .2), (Lh.3), (I.h.6), (I .h .7), (I .h.8),(I.h.ll), (I .h .12) ;
(II .h.l), (II .h.2), (II .h .3), (II .h.4), (II.h.6), (II .h.7), (II .h .8), (II.h.9),
(II.h.10) ; (III.h.l), (III.h.2), (III.h.3), (III.h.4) ; (IV.h .l), (IV.h.2),
(IV.h .4), (IV.h.5) ; (VII.h.l), (VII .h.2), (VII.h.3) .

d) with a critical point of type t, (Le . homogeneous quadratic systems) .
Table 1.17 . Classification of all the QS1.

The phase portrait of homogenous polynomial vector fields on the plane, or
on the Poincaré sphere has been studied in many papers, see for instante [M],
[A] and [D] . In Figure 1 .1 we give all the phase portraits for planar quadratic
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2 . Phase portraits for degenerate and linear QS1

Figure 1.1 . Phase portraits for homogeneous quadratic systems, topologically
diferent from (b) of Figure 3.1 .

From the following result we know that the only cases of the ones of Table
1 .17 for which we can have limit cycles are (1) and (2) .a.

Proposition 1 .9 . (See [C1], [CJ]) . Leí y be a periodic orbit of a QS and
D the region bounded by y . Then there exists an open set U which contains D
such that D contains exactly one singularity of ¡he QS which is a weak focus,
a focus or a center .

From Remark 6 of [CGL] a QS such that g(x, y) = XQ2(x, y) - YP2(x, y) - 0
has no limit cycles . Degenerate and linear QS1 are such that g(x, y) - 0 and
hence they will not have limit cycles .

From Table 1.17, we know that the degenerate and linear QS1 are afine
equivalents, scaling the variable t if necessary, of one of the following types :

Degenerate : (III .e .3), (III.h.5), (V.e .3), (VIII.s .3) ;
Linear : (IV.e .4), (VIII .el .3), (VIII-62 .3) .

We can write them in the following form.
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Lemma 2.1 . For a degenerate or linear QS1 there exists an afine transfor-
mation and a scaling of the variable t which reduces it to one of the following
systems:

(D.1)

	

x = y + x2 ,

	

y = -x + by + xy

	

with

	

lb¡ < 2 .
(D.2)

	

i =y+ x2,

	

y =xy .
(D.3)

	

x =x2 - 1,

	

y =x + y + xy .
(D.4)

	

x = x2 ,

	

y =y + xy.
(L.1)

	

x = y,

	

y = -x + by with 0 _< b < 2 .
(L.2)

	

x = x,

	

y = by with b :~ 0 and lb¡ < 1.
(L.3) x=x,

	

y=x+y.

Proo£ Cases (D.1), (D.2), (D .4) and (L.3) follow from (III .e .3), (III.h.5),
(VIII.s .3) and (VIII.e2 .3) respectively. The case (D .3) follows from (V.e.3)
using the coordinates xl = x, y l = -y/d - 1 . If lb¡ < 1 the system (VIII.e l .3)
is (L.2) . If lb¡ > 1 then system (VIII.e l .3) becomes into (L.2) by using the
transformation xl = y, yi = x, t 1 = bt . Sytem (IV.e.4) with plus sing, or with
minus sign and b >_ 2 becomes into (L.2) or (L .3) writting the linear part of
the system in the canonical Jordan and scaling the variables . System (IV.e.4)
with minus sign and 0 < b < 2 is (L.1) .

Theorem 2 .2 . The phase portrait of a degenerate or linear QS1 is homeo-
morphic (except, perhaps the orientation), to one of the separatrix configu-
rations shown in Figure 2.1 . Furihermore, sytems (D.1)-(D .l,), (L.1)-(L3)
realize these configurations .

Proof.: By Lemma 2.1 to show the theorem it is suficient to draw the phase
portraits of systems (D.1)-(D .4), (L .1)-(L.3) .The expression of (D.1) in coordi-
nates x l = -l+y+bx, yl = x is x = xy, y = 1+x+by+y 2 with -2 < b <_ 0 (ta-
king x l = -x, tl --- -t if necessary) . In the local chart Ul (see [G], [S]) this sys-
tem becomes y' = z(1+by+z), z' = z(-y). Hence phase portraits Dl or D2 of
Figure 2.1 follow according to b q¿ 0, b = 0 . System (D.2) writes as x' = z, z' =
-xz, in the local chart U2 . The orbits of this system (after omitting the common
factor z) are z = -y2 /2 + k . Therefore its phase portrait is like D3 of Figure
2.1 . The trajectories of system (D.3) are y(x) = [(x - 1) log(1x - 1l/ix + 11) -
-2k(x - 1)]/4, and x = ±1. Hence its phase portrait is given by D4 of Figure
2.1 . The phase portrait of system (D .4) is given by Ds of Figure 2.1 because its
trajectories are y(x) = kx exp(-1/x) and x = 0 . The linear system (L.1) has a
centre or a focus at the origin according to b = 0 or 0 < b < 2 . Therefore, its
phase portrait is like L 1 or L2 of Figure 2.1, respectively. The phase portrait
of the linear system (L.2) is given by L3 , L4 or LS of Figure 2.1 according to
0 < b < 1, b = 1 or -1 _< b < 0 . Lastly, L6 of Figure 2.1 gives the phase
portrait of (L.3) .
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L 2

Figure 2.1 . Phase portraits of QS1 either degenerate or linear .

L1
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3 . Phase portraits for QS1 neither degenerate non linear with
the finite rest point of type h

By Table 1 .17 we must study the following cases :
(I.h.1), (I.h.2), (I.h.3), (I.h.6), (I .h .7), (I.h.8), (I.h.11), (I.h.12) ; (II.h.1),

(II .h.2), (II.h.3), (II.h.4), (II.h .6), (II .h.7), (II .h.8), (II.h.9), (II.h.10) ; (III.h.1),
(III.h.2), (III.h.3), (III.h.4) ; (IV.h.1), (IV.h.2), (IV.h.4), (IV.h.5) ; (VII.h.1),
(VII.h.2), (VII .h.3) .
Before begining the study case by case we shall give some general results that

will be useful in order to short the proofs .

Proposition 3.1 .

	

The topological possibilities for a phase portrait of a Q51
of type (A, a) where A E {E, S} and a E {e, s, h} are given in Figure 3.1 .

Figure 3 .1 . Topological possibilities for phase portraits of type (A .a) where
A E {E, S} and a E {e, s, h} . The symbol -b denotes either a stable node or
focus or stable or unstable focus on the interior of one or more limit cycles, the
outhermost of which is externally stable .

Proof. It follows easily from Theorems E, S, H and the Poincaré-Hopf Theo-
rem .

In Section 5 we shall see that the phase portrait given by (c) of Figure 3.1
will be either without limit cycles or with a unique stable limit cycle .

Proposition 3.2 . (see [Y2]) . Given a QS and a straight line L connecting
a finite critical point M with an infinite critical point N, L is either a trajectory
or a line without contact (except M). In this laten case, trajectories cut NM
and MN' (where N' is the diametrical opposite infinite critical poini of N) in
opposite direction.

Lemma 3.3 . The local phase portraits of the singularity of type H for a
QS1 of type (III) with n = 0 are those shown in Table 3.1 .
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m<O .

M=0,

	

b-.e < O,

	

x

m=b-I=0,
a<O .

m=b-.Q.=O, a>0

	

similar to case m<O.

m=0,

	

b-I >O.

0<m<1

	

similar to case m=b-I=0, a <O .
w

m=1,1<O.

1<m<2 .

m=2 .

m>2.

w

Table 3.1 . Local phase portrait of the singularity of type H for a QS1 of type
(III) . Note that in the cases (*) the infinity z = 0 is not formed by separatrices .
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Proof. A QS1 of type (III) in the local chart U2 writes in the form

x = z + (1 - m)x2 - bxz - 2x3 - ax2z - dxz2,
z = -mxz - bz 2 - 2x22 - axz2 - dz3 .

After appling to this system two succesive changes of variables x = x, z =
wi x and x = x, w1 = wx and omitting a common factor x, the system goes
over to

Either m <O, or
m=b-.Q=O, a >O.

x = (1 - m)x - 2x 2 + xw - bx 2w - ax3w - dx4w2,
ib = (m - 2)w + 2xw - 2w2 + bxw2 + ax2 w2 + dx3w3 .

If m :~ 2 then this system has exactly two singulaxities on the w-axis, the
points (0, 0) and (0, (m - 2)/2) . From Theorems E and S we can study its
nature . When m = 2 the unique singularity is the origin . Now, by using
Theorem H the Lmma follows . a

In the hypotheses of Lemma 3.3, by studying the nature of the singularity
of type E (if it exists), we have the behavioux of the flow near infinity. It is
showed in Figure 3.2 .

m=0, b-% <O .

	

Either m=b-I=0, m=0, b--.QUO.

a<O, or 0<m<1 .

m=1,1>0 .

	

m=1, 1< 0 .

	

1<m<2 .

	

m : 2 .

Figure 3.2 . Phase portraits of systems studied in Lemma 3.3 in a neighbour-
hood of infinity .
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Lemma 3.4 . The local phase portrait of the singularity, of type H for ¡he
system i = y, y = ax + by + fx 2 -}- mxy with m qÉ 0 is shown in Figure 3.3 .

m >O .

z

(3 .1)

	

i = x2 , y = x + ex2
+ xy +y 2 ,

m <O .

Figure 3.3 . Local phase portrait of the singularity of type H for the systein
considered in Lemma 3 .4 .

Proof. The system in the local chart U2 goes over to i = z - mx2 - bxz -
fx3 - ax 2 z, z = -mxz - bz 2 -Qx2 z - axz2 . We apply to this system the two
succesive changes of variables x = x, z = wlx and x = x, wl = wx. Therefore
it is equiválent (after omitting a common factor x) to i = -mx - £x2 + xzo -
bx 2w - ax 3 w, ú) = mw + £xw - 2w2 + bxw2 + ax 2 w2 . This system has two
singularities on the w-axis, a saddle at (0, 0) and a node at (0, m/2) . So the
lemma follows .
We shall begin our study for system (VII) and will follow in the decreasing

ordering .

Systems (VII.h .1), (VII.h.2) and (VII.h.3) . These systems have the
expression i = x2 , y = x + Px 2 + mxy + y2 . In the coordinates xl = x,
y, = y + (m - 1)x/2 these systems write as

where V = (V - (m `- 1) 2 )/4 and ~' < 0,£' > 0,£' = 0 correspond with the
systems (VII.h .l), (VII.h.2), (VII.h.3) respectively . By Theorem H we have
that the (0, 0) of (3.1) is a saddle-note . In order to know if x = 0 is a separatrix
of this point we make two successive "blow ups" : x = wly, y = y ; wl = wy,
y = y and system (3 .1) transforms into (after omitting a common factor y)

y = y + wy, + wy2 +ew2y 3
,

	

w= -2w - 2w2 - 2£w3y2 - w2 y>
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that has two singularities on the w-axis . Since the (0, 0) is a saddle point we
have that x = 0 is a separatrix of (0, 0) of system (3 .1) .
The point (0, 0) of the local chart U2 is an attractor node . By Theorems E

and S in the local chart Ui these is a saddle and a node, no singularities, or
one saddle-node if £' < 0, ~' > 0 or 2' = 0, respectively. From these facts and
the study of the vector field given by (3'.1) on the axes we have pictures h l , h2
((a) of Figure 3 .1) and h3 of Figure 3.4 according with ~' < 0, P' > 0 or 0,
respectively.

System (IV.h.I) . The equations of this system are í =y, y = $x2 +mxy+
+ny2 with n2 :~ 0 and m2 - 4ne > 0 . In coordinates xl = nx, yl = ny it can
be written as

(3.2)

	

¡=y,

	

y = £x2 +mxy + y2,

where we can assume that m <_ 0 (with the change of variables y, = - y, x, = x,
t l = -t if necessary) . By Theorem H, the (0, 0) of (3.2) is the reunion of two
hyperbolic sectors . By Theorems E and S, we obtain two different behaviours
on the infinity according with £ > 0 or ~ < 0 . By studying vector field (3.2) en
the axes and by Proposition 3 .2 we obtain phase portraits h4 and hs of Figure
3.4, respectively.

System (IV.h.2) . By Theorem H and Proposition 3.1 the phase portrait
of this system is (b) of Figure 3 .1 or equivalently hs of Figure 3.4 .

System (IV.h.4) . In the coordinates x, = m2xf, yl = MIyf, t, = Qt/m
this system can be written as

(3 .3)

	

x=y, y=x2 +xy .

By Theorem H, the finite singularity is the reunion of two hyperbolic sectors .
By Lemma 3.4, the singularity (0, 0) of the local chart U2 is the union of a
hyperbolic sector with an elliptic one and the .infinity, z = 0, is formed by
separatrices . From Theorem S and the Poincaré-Hopf index Theorem we can
prove that the singularity of type S is a saddle-node . In short, taking into
account the flow on the axes the phase portrait of (3 .3) is like h7 of Figure 3.4 .

System (IV .h.5) . This system has the expression x = y, y = x2 (after
scaling the variables) . Its integrals curves are x3 /3 - y2/2 = k . So its phase
portrait is homeomorphic to hs of Figure 3.4 .

Systems (III.h.1), (III.h.2) and (III.h.3) . These systems can be written
as x = y + x2, y = Qx2 + mxy + ny2 with either n

	

0, m2 -W < 0 or n 7~ 0,
7n =

	

= 0. If m = 2 = 0, using the changes x, = y, y l = x and x2 = n2x1,
y2 = nyl, t 2 = t/n this system writes like a system of type (VII.h) that has
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h13

h11

h18

h22 h23

Figure 3.4 . Phase portraits of QS1 that have a finite critical point of type h
and whose infinity is neither degenerate nor linear .
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been already studied . In the other case the change of coordinates xl = x/n,
y1 = y/n2 , t l = nt writes our systems in the form

x=y+x2 ,

	

y= &2-{-mxy-}-y2 .

By Theorem H, the finite singularity of this system is the union of two hy-
perbolic sectors . By Theorems E and S, the behaviour of the vector field in a
neighbourhood of infinity for systems (III.h.1), (III.h.2) and (III.h.3) is given
by (a), (b) and (c) of Figure 3 .5, respectively.

Figure 3.6 . Separatrices of the origin of system (3.4) .

Figure 3.5 . Behaviour in a neighbourhood of infinity of system (3.4) .

The case (III.h.2) is already studied in Proposition 3.1 . By Proposition 3.2
by taking the straight line connecting the (0,0) with the saddle at infinity
(resp . the saddle-node at infinity) in the case (III.h.1) (resp . (III.h.3)) and
studying the vector field on the axes we can determine totally the behaviour of
the separatrices of the origin . Their behaviour is showed in Figure 3.6 .
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Hence the topological possibilities for the phase portrait of system (3.4) are
h8 , h 9 , hio, hll and hit of Figure 3 .4 . Note that y = -mx - m is an invariant
straight line by the flow when £ = -m and it is a straight line without contact
when ~ -m. From this fact we have that the phase portraits of system (3 .4)
when £ _ -m, m E (-1, 0) ; £ = -m, m E (-4, -1) ; m < -1; m = -1 are h8 ,
h9 , h lo and hll of Figure 3.4, respectively. New we must find a QS1 that has
the phase portrait h it of Figure 3 .4 . We do not worried about it because this
phase portrait will be the phase portrait of system (I.h.8) .

System (III .h.4) . This system has the expression

(3.5)

	

x =Y+ x2 ,

	

y =&2 + mxy,

with m :~ 1 and either m 54 0 and ~ = 0 or m = 0 and ~ :~ 0 . Assume m 7É 0 .
Then by Theorem H the singularity (0, 0) of (3.5) is a saddle if m < 0 and
the union of a hyperbolic sector with an elliptic one if m > 0 . By using the
same arguments that in the study of the finite singularity of systems (VII.h.I),
(VII .h.2) and (VII.h .3), when m > 0 we have that the invariant straight line
y = 0 is formed by separatrices only if 0 < m <_ 2 . Therefore, by Lemma 3.3 it
follows the phase portraits hi3, hi4, hi5, his and hi7 of Figure 3.4 according
tom<0,0<m<1,1<m<2,m=2 andm>2,respectively.
Now suppose m = 0 . Then system (3 .5) can be written in the form

(3 .6) x=y+x 2 , y=x2 .

For this system the origin is the union of two hyperbolic sectors (see Theorem
H). So, by Lemma 3.3, and studying the flow on the x and y axes, we obtain
that the phase portrait of (3.6) is like hl8 of Figure 3.4 .

System (II.h.1) . This system can by written in the form x = xy, y =
= d + ax + by -{- &2 -1-mxy -}- ny 2, with n q¿ 0, 1, P 7É 0, b2 - 4nd < 0, a2 = Vd,
2U = ma, and m2 - 4(n - 1)P > 0 . By using the change of coordinates
xl = ala¡ -lx, yi = ml7nl -llaga - ly, ti = mlml-líala-lt, (where mlml -1 = 1 if
m = 0) we can assume that a > 0, m > 0 .
The finite singularity (-a/2e, 0), by Theorem H, is union of two hyperbolic

sectors . By Theorem E and by studying the vector field on the straight lines
y = 0, x = 0 (invariant), x = -a/2P, and the ones connecting the finite
singularity and the saddle at infinity (if n > 1) we obtain phase portraits
homeomorphic to h8 , hg , and h5 of Figure 3.4 according with n > 1, 0 < n < 1
and n < 0 respectively.

Systems (II.h.2), (II.h .7) and (II.h.9) . These systems have been studied
in Proposition 3.1 .
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System (II.h.3) . This system has the expression x = xy, y = d+ax+by+
+£x 2 + mxy + ny2 with n r~ 0 , 1, 0, m2 = 4(n - 1)£, b2 - 4nd < 0, a2 = 4£d,
2b£ = ma. In the coordinates x1 = ax/b2 , y1 = y/b, t 1 = bt it can be written
as x = xy, J = 1/(4n - 4) + x -}- y + (n - 1)x2 + (2n - 2)xy -f- ny2 with n > 1.
The finite singulaxity, by Theorem H, is union of two hyperbolic sectors . By
Theorems E and S and by studying the vector field on the straight lines x = 0
(invariant), y = 0, x = -1/(2(n - l)) and by Proposition 3 .2 we obtain that
the phase portrait of this system is homeomorphic to hIo of Figure 3.4 .

System (II.h .4) . This system becomes
(3.7)

	

x = xy,

	

y = x + xy +ny2

with n :~ 0,1 in the variables x1 = m2x/a, y1 = my/a, t1 = at/m .
By Theorems E and S we can determine the behaviour of system (3.7) in a

neighbourhood of infinity . By Theorem H, the origin is a saddle if n < 0 and
the union of a hyperbolic sector and an elliptic one if n > 0 . By using the same
arguments that in the cases (VII.h.l), (VII.h.2) and (VII.h.3) we have that the
invariant straght line y = 0 is a separatrix if n >_ 1 and it is not a separatrix
if 0 < n < 1/2 . Hence phase portraits of system (3.7) are h19 , h20 , h 21 and
h22 of Figure 3 .4 according with n < 0, 0 < n < 1/2, 1/2 <_ n < 1 and n > 1,
respectively .

System (II .h.6) . In coordinates x1 = alai-'(£/d)' 1 2x, y 1 = (1/1di )1/2 y,
t 1 = Id¡ 1/2t this system can be written like x = xy, y = 1 -f- 2x + x2 . This
system has the invariant curves x = 0, y2 = x2 + 4x + 21og Ix 1 + k. So its phase
portrait is homeomorphic to h9 of Figure 3.4 .

System (II.h.8) . In coordinates x1 = ala¡-1£1/2d-1 2x,
y1
= d-1/2y, t 1 =

- di/2t it writes in the form x = xy, y = 1 + 2x + m'y -}- x2 + m'xy + y2 with
m' 54 0 and ¡m'¡ < 2 . By using the new coordinates x1 = x, y1 = -y, t 1 = -t
(if necessary) we can assume that 0 < m' < 2 . By the same arguments that
in the above cases we obtain that its phase portrait is homeomorphic to h 11 of
Figure 3.4 .

System (II.h.10) . This system can be studied in the same way that system
(II.h.4) but with n = 1 . Its phase portrait is given by h2 3 of Figure 3.4 .

Before the study of system (I) case by case we shall give some general results
about it .

Lemma 3.5 . (i) System (Ih) with £ = 0 is afne equivalent to some system
contained in types (IIh) or (VIIh) .

(ü) System (Lh) with £ VÉ 0 has two hyperbolic sectors at the origin.

Proof. (i) follows by taking the changes of variables x1 = y, y1 = mx + ny if
m :~ 0, and x1 = y, y1 = x, t 1 = nt if m = 0, respectively, and (ii) follows from
Theorem H .
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Hence from now en we will assume that Q 7É 0 for systern (I.h) .

Lemma 3 .6 . System (I.h.ll) (with e :~ 0) can be transformed, by a change
of variables plus a scaling of ¡he time, into one of the following cases : (III.h),
(H.h) or (I.h.3) .

Proof.. This systern has the equations x = y-x2 +xy, y = &2+mxy+y2 with
m 9¿ -1, £+m+1 0, m2 -V < 0. In the coordinates xr = x+(m+l)y/~, yr =
= y it writes as i = y+mx2+(£-m(m+1»xy/~, y = &2+(-m-2)xy+(P+m+
+1)y2f . If £-m(m+1) = 0 in the new coordinates xr = mx, yr = my it writes
like a systern of type (III.h) . If £ - m(m+ 1) qL 0 and m = 0 this system writes
like a systern of type (II .h) in the coordinates xr = -x + l, yr = y, ti = -t .
Finally if ~-m(m+1) qÉ 0 and m :~ 0 in coordinates xr = (-m(m+1)+~)x/P,
yr = -((-m(m + 1) + Q)/~) 2 y/m, t r = -met/(-m(m + 1) + ~) we obtain
x = y-x2 +xy, y = (-?n(m+1)+0x2/7n2+(m+2)xy/m+(m+1+£)y2/(~_
-m(m + 1)) and since (m + 1 + Q)l(Q - m(?n + 1)) :~ 1 we have a systern of
type (I.h.3) . E

Systems (I.h.l) and (I .h.6) have at infinity singularities of types (E, E, E)
and (E, E, S) respectively. Hence from Lemma 3.5 (ii), Theorems E, S and the
Poincaré-Hopf index Theorem we have that in both cases the indices of the
points at infinity are (1,1- 1) and, by consequence, these systems have ahvays
a saddle at infinity.

Lemma 3.7 . None of ¡he separatrices of ¡he origin in systems (I.h.1) and
(I.h .6) can coincide with the separatrices of the saddle points of these systems
at infinity .

Proof.. By theorem H we know that the critical direction of the (0, 0) is
y = 0 . Since y = 0 is not an invariant straight line for these systems we know,
by Proposition 3.2, that the straight line L connecting the (0, 0) with the saddle
point at infinity is without contact for the flow of these systems . If we assume
that a separatrix curve of the origin coincides with a separatrix at infinity of
the saddle point then it should exist, at least, a contact point p E L arad this
fact is impossible (Figure 3.7 illustrates this claim) .

Figure 3.7 . Local phase portrait that is not possible for QS.
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Systems (I.h.1) and (I.h .6) . From Lemma 4.7 the unique topological
possibilities for the phase portraits of these systems are hl , h8 and h9 of Figure
3 .4 . These phase portraits have been already realized .

Systems (I.h.2), (I.h.7) and (I.h.12) . They follow from Proposition 3.1 .

System (I.h.3) . This system has the equations i = y - x2 + xy, y = ex2
+mxy+ny2 , with ~ :~ 0, n qÉ 0, 1, 2m+4e+1 > 0, m2 -4nf+2m+4e+1 = 0 and
2n + m - 1 7É 0 . By using Lemma 3.5 (ii), Theoem E and S and Proposition
3.2 applied to the straight line connecting the (0, 0) with the saddle-node at
infinity we obtain that its phase portrait is homeomorphic to hlo , hll or hl2 of
Figure 3.4 .

System (I.h.8) . This system writes as i = y - x2 + xy, y = -x2 /4 . By
Theorem S and by studying the vector field on the straight lines x = 0, y = 0,
y = x/2, y = x/2 - 1/2 we obtáin that its phase portrait is homeomorphic to
hl2 of Figure 3 .4, that is the one that we had not yet realized .
From Figure 3.4, it follows that in the study made in [JR] theie are some

omissions . For instance pictures hls , hi7 and h20 do not appear in their clas-
sification .

4 . Phase portraits for QS1 neither degenerate nor linear with
the finite rest point of type s or e and without limit cycles

In this section we shall study the phase portrait of QS1 neither degenerate
nor linear with the finite rest point of type s or e and that can not have limit
cycles . The systems with a singularity of type e and that can have limit cycles
will be studied in the following section .
We classify the systems studied in this section into the following cases :

(A) QS1 with some non-elementary singularity at infinity.
(B) QS1 with three elementary singularities at infinity.
(C) QS1 with exactely two elementary singularities at infinity .

Note that we do not consider the systems with a unique elementary singula-
rity at infinity because these systems have been already studied in Proposition
3.1 .
Case A. We subdivide these systems into two subcases :

(A1). Systems of case (A) and with the finite rest point of type s .
We must study systems (VII.s.1), (VII.s .2), (IV.s .5), (IVs .6), (III.s .4)

and (III.s.5) .

System (VII.s.1) . It has the equations i = x2 , y = y+ex 2+mxy, withm =~
1 . If 2 :~ 0 the we introduce the change of variables x l = x, y, = x + (m -

1)y/P, and the system becomes into i = x 2 , y = x + y + mxy with m :~ 1 . This
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system has the straight line x = 0 invariant and the other solutions are given
by

l/x
Y(X) = e-1/X I - xlm(- f

	

tm-le-tdt + k),
t o

where t o = 0 if x < 0 and to = -oo if x > 0 . Drawing these solutions for m < 1
or m > 1 we obtain the phase portraits El or E2 of Figure 4.1, respectively .
When ~ = 0 system (VII.s .1) has the straight lines x = 0 and y = 0 inva-

riants, and the other solutions are y(x) = kjxj'e-'1x . So,we have the phase
portraits El or E3 of Figure 4.1 according to m < 1 or m > 1 .

System (VII.s .2) . In coordinates xl = x, yl = y/~ it writes x = x2,

y = y + x2 + xy . Its solutions are the straight line x = 0 and
1/x

Y(X) = -xe-ley (~

	

t -1 e -tdt + k),
Jto

where to = 0 if x < 0, or to = -oo if x > 0 . Therefore, its phase portrait looks
like E4 of Figure 4.1 .

System (IV.s.5) . In coordinates xl = Cx, yl = Qy this system has the
expression x = y, y = y + x2 + mxy, m qÉ 0 . By Lemma 3.4 the singularity of
type H is the union of an elliptic sector with a hyperbolic one, and the infinity
in its neighbourhood is formed by two separatrices . By Theorem S we obtain
the local behaviours of the saddle-nodes at origin and at infinity. In short,
by using the flow on the axes we obtain the phase portraits Es, E6, E7 and
E8 of Figure 4.1 according to .m < -1, m = -1, -1 < m < 0 and m > 0,
respectively .

System (IV.s.6) . By using the same variables that in the above system we
obtain that its expression is z = y, y = y -}- x 2 . Since the infinity singularity is
a node (by Theorem H) we obtain that its phase portrait is homeomorphic to
the phase portrait (a) of Figure 3.1 .

System (III.s.4) . This system has the equations x = y + x2 , y = y +W+
+mxy where m :~ 1 and either m 7¿ 0 and P = 1, or m = 0 and ~ :~ 1 .
Assume that m :~ 0 . Then the finite singularity is a saddle if m < 0 and an

unstable node if m > 0 . Then, by Lemma 3.3, Figure 3.2 and by studying the
flow on the axes we have the phase portraits E9 , Elo , El, and E1 2 of Figure
4.1 according to m < 0, 0 < m < 1, 1 < m < 2 and m > 2, respectively.
Now, suppose m = 0 . Then, the system becomes x = y + x2 , y = y + &2

where 2 :~ 1 . By Lemma 3.3, the singularity of type H is a saddle-node an in
its neighbourhood the infinity is formed by two separatrices . By Theorem S,
the origin is a saddle-node a.nd we know the local behaviour of its separatrices .
In short, using the flow on the axes we obtain the phase portraits E1 3, E14,
E15 and E16 of Figure 4.1 according to 2 < -1, _ -1, -1 < < 1 and ~ > 1,
respectively.
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Figure 4.1 . Phase portraits of case (Al) .

E8

E16
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System (III.s.5) . This system is given by the equations x = y + x2 , y =
= y + x2 + xy . The origin is an unstable node . Then, by Lemma 3.3 and by
studying the flow on the axes we obtain that its phase portrait is like E17 of
Figure 4.1 .

(A2) . Systems of case (A) and with the finite rest point of type e .
We must study systems (VIII.e 1 .2), (VIII-62 .2), (VIII.e l .1), (VIII.e 2 .1),

(Ve.2), (V.e .1), (IVe.3) and (III.e.1) .

System (VIII.el .2) . This system has the expression x = x, y = by + 2x2
with M :~ 0 . We introduce the change x1 = x, yl = y/£ . Then, the system
becomes x = x, y = by+x2 with b :~ 0 . Its solutions are y(x) = x2/(2-b)+k¡xi'
and x = 0 if b :~ 2, or y(x) = x2log IX l + kx2 and x = 0 if b = 2 . So its phase
portraits are like E18 , (c) of Figure 3.1 or Elg of Figure 4 .2 according to b < 0,
0 < b < 2 or 2 < b . By reversing the orientation of all the trajectories in this
last case we obtain the phase portrait of the bounded quadratic system omitted
in [DP], (see also [CGL].)

System (VIII.e2 .2) . In the variables x1 = Zx, y1 = Zy it converts into
x = x, y = x + y + x2 . Since its solutions are y(x) = x log Ixi + x2 + kx and
x = 0, its phase portrait is shown in (c) of Figure 3.1 .

System (VIII.el .1) . This system is given by x = x, y = by + Zx2 + jnxy
with bm qÉ 0 . If P q£ 0 then the change of variables x1 = mx, yl = m2 y/2
converts it to the form .¡ = x, J = by + x2 + xy with b 7~ 0 . The solutions of
this system are x = 0 and

log x
y(x) =

eblog
I xI ex(f6

(2-b)te- !'dt + k) .
00

So, its phase portrait is shown in E20 or E21 of Figure 4 .2 according to b < 0
orb>0.
When £ = 0 ,ve introduce the coordinates x1 = mx, y1 = x and the system

has the equations x = x, y = by + xy with b :~ 0 . Since its solutions are x = 0
and y(x) = kexeb1oglxl, we obtain the configurations E22 or E21 of Figure 4.2
according to b < 0 or b > 0 .

System (VIII.e2.1) . This system has the expression x = x, y = x + y +
+2x2 + mxy with m :~ 0 . We introduce the variables x 1 = mx, y1 = m(y + Zx)
and the system becomes x = x, y = x + y + 2(1 - m)x2 /m + xy . Its solutions
are x = 0 and

y(x) = xex(flog
IXI e-e

(1 +
2(1

- m)et/m)dt + k) .
00

So its phase portrait is like E21 of Figure 4.2 .
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E25

E27 ~....!/ E28

Figure 4.2 . Phase portraits of systems (A2) .

E20

E 23

E26
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System (V.e .2) . This system is given by x = x? -1, y = d-}-y+&2 + xy
with ~ :~ 0 and d +£ :~ 0 . It goes over to x = x2 - l, y = d' + y + x2 + xy with
d' :~ -1, by using the transformation x l = x, y l = yl. This system has the
straight lines x = ±1 invariant and the other solutions are given by

y(x) = 2-1 (1 - x)[2-l d' log(1x - li/Ix + 11) + 2-1 d'(x + 1)(x - 1)-
- 11/(21og(Ix-11/Ix+1U)

(1 + e2e)Z e-2í(1 _ ele )-l dt + k] .
o

where to = 0 or to = -oo according to x E (-oo, -1) or x E (-1,1) U (1, oo) .
Drawing these solutions we obtain the phase portraits E23 of Figure 4 .2 and
E17 of Figure 4 .1 according to d' + 1 < 0 or d' + 1 > 0.

System (V.e.1) . The expression of this system is given by x = x2 - 1,
y = d + my + £x2 + mxy with m :~ 0,1 and d + £ :~ 0. The change of variables
x l = x-1, yl = y+ex/(m-1)+[d(m-1)-e(m-1)]/[(2rn)(m-1)] writes the
system in the form x = 2x+x2 , y = a'x+2my+mxy with a' = -(d+~)/2 qÉ 0 .
We can assume that a' > 0 using the change xl = x, y l = -y, if necessary .
The solutions of this system are x = 0, x = -2 and

log(1xl/Ix+21)/2
y(x) = 1 - x/21m[-2a~

	

(1 - e-21)rn-ldt + k],f
to

where to = 0 or to = -oo according to x E (-oo, -2) or x E (-2, 0) U (0, oo) .
So, its phase portraits are like E24 , E25 or E26 of Figure 4.2, according to
m>1,0<m<1orm<0 .

System (IV .e .3) . In coordinates xl = mx, yl = my, it writes in the form
x = y, y = fx + by + xy, where b >_ 0. Suppose the plus sign in this system .
Then the origin is a saddle . By Lemma 3 .4 the singularity at infinity is the
union at an elliptic sector with a hyperbolic one and the infinity is formed, in
its neighbourhood, by two separatrices . By the Poincaré's index Theorem and
Theorem S, the singularity of type S is a node . So, the phase portrait of the
system is given by h13 of Figure 3 .4 .
Assume now the minus sign in the system . If b = 0 its solutions are

eye
-x2/2 (y - 1) = k . So, its phase portrait is like E27 of Figure 4.2 . When

b > 0 let V(x, y) be the funtion eye
-x2

/2(y - 1) . Then V(x, y) = Vx x + Vyy =
= by2eye-x 2 /2 >_ 0 . Therefore, its phase portrait is given by E12 of Figure 4.1 .
In this picture, the origin is an unstable focus or node according to 0 < b < 2
or b > 2, respectively.

System (III.e .1) with m = 0,Q = b. This system has the expression x =
= y + x2 , y = ±x + by + bx2 . In the coordinates xl = bx - y, yl = x it writes
like x = y, y = fx + by + ny2 , with n qÉ 0, and in the new variables x l = nx,



y1 = ny it converts into x = y, y = fx + by + y2 , where we can assume that
b >_ 0 . By Lemma 3 .3, this last system with the plus sign has a phase portrait
homeomorphic to hi3 of Figure 3 .4 .

If we consider this last system with the minus sign (the Liénard's systexn of
degree two, see [LMP]) then, the function V(x, y) = e-2x(x2 - y2 + 1/2) is
such that V(x, y) = Vix+Vyy = -2by'e-2x < 0 . So the phase portraits of this
system with the minus sign are homeomorphic to E28 or Elo of Figures 4.2 or
4.1 respectively, according to b = 0 or b :~ 0 . Note that if 0 < b < 2 the origin
is a focus .
Case B. We subdivide these systems into the following subcases :

(B1) Systems (B) with an elementary finite singularity of index 1 or -1 .
(B2) Systems (B) with an elementary finite singularity of index 0 . We

separate them into :
(B2.a) Systems (B2) where indices of the infinite singularities are (1, 0, 0) .
(1321) Systems (B2) where indices of the infinite singularities are (1, 1, -1) .

Now we begin the study of these subcases .
Case (B1) . In this case, since it is very easy to do a study of all topological

possibilities for the phase portraits of these systems, we summarize the results
in the following two lemmas, which are given without proof. To prove them
use the Poincaré-Hopf Theorem .

Lemma 4 .1 . The phase porirait of a QS1 with three elementary infinite

critical points and the finite point of saddle type is homeomorphic to one of the
phase portraits of Figure 4 .3 .

Q S WITH ONE REST POINT
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Figure 4 .3 . Phase portraits of systems (B1) with a saddle point as finite
singularity.

Lemma 4.2 . The phase portrait of a QS1 with three elementary infinite

critical points, the finite critical points of index + 1 and without periodic orbits
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is homeomorphic to one of the phase portraits of Figure 4 .4 .

E31

Figure 4.4 . Phase portraits of systems (B1) with a point of index 1 as finite
singularity.

Note that in this classification we do not consider the case in which the origin
is a topological center because, by the results of Vulpe [V] we already know
that there is only five different phase portraits of QS1 with a center . In fact
two of these phase portraits have been already obtained in Section 2 (D l and
LI of Figure 2 .1) ; and in Figure 4.2 we have two more phase portraits, E27 and
E28 . The remainder case will appear in Figure 5.7 .
Now we must find QS1 that have the phase portraits of Figures 4.3 and 4 .4 .

Most of cases of Figure 4.4 will appear when we study the QS1 that can have
limit cycles and so we will postpone this problem for the following section . The
realization of cases of Figure 4.3 is given in Table 4.1



Table 4.1 . Realization of the phase portraits of Figure 4.3 .

Case (B2 .a) . By Theorems E and S, we know that we only can have indices
(1, 0, 0) at infinity when the singularities at infinity are of type (E, S, S) . So in
this case we only must study the systems (VIII.s.1) and (IV.s.1) .

System (VIII.s .1) . In coordinates xl = x, y l = ny its expression is given
by x = x, y = W -f- mxy + y2 where m2 - V > 0 . If Q 7É 0 then we can assume
that m >_ 0 (by taking x l = -x if necessary) . By Theorems E and S, we obtain
that the finite singularity is a saddle-node and the infinite singularities have
indices (1, 0, 0) . Note that x = 0 is an invariant straight line . If we consider
the straight lines y = mix where mi are the slopes of the infinite singularities,
by Proposition 3.2 and Theorems E and S, we obtain that its phase portraits
are E37 and E38 of Figure 4.5 according with ~ > 0 or ~ < 0, respectively.

with

6=1,m>O,d>0

a=1,d<O,n<0

System

(II.e .3)

(II.e .1)
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has the phase portrait

E29

Eso

E39

Figure 4.5 . Phase portraits of systems (B2.a) .
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If

	

= 0, in coordinates x2 = mx1 , y2 = yl we obtain that its expression is
i = x, y = xy + y2 . In this case x = 0 and y = 0 are invariant straight lines
and it is easy to verify that its phase portrait is homeomorphic to E38 of Figure
4.5 .

System (IV.s .1) . In coordinates x 1 = x, y1 = ny, t1 = t the equations of
this system are i = y, y = y + ~x2 -{- mxy + y2 with m2 - 4£ > 0, ~ :~ 0. The
finite critical point is always a saddle-node whose separatrices approach to it
in the directions of y = 0 and y = x . The infinite critical points are always a
node and two saddle-nodes (by Theorems E and S) . If we consider the vector
field on the straight lines x = 0, y = 0, y = mlx, y = m2x where ml and m2
are the slopes of the infinite critical points, with ml > m2, then by Proposition
3 .2 we can prove that the phase portraits of these systems are homeomorphic
to E39 if t? > 0 and m > 0; to E37 , E4o, E38, E4o, E37 if P > 0, m < 0 and
m2 > 1, m2 = 1, m l > 1 > m2, ml = 1, m l < 1, respectively ; and to E41 , E42
or E43 of Figure 4.5 if

	

< 0 and m1 < 1, m1 = 1 or m1 > 1, respectively .
Case (B2.b) . Instead of studying the systems cases by case we will do

a topological classification of all the possibilities, and after we will find these
phase portraits .

Lemma 4.3 . The phase portrait of a QS1 with three elementary infinite
critical points of indices (1, 1, -1) and a finite critical point of saddle-node
type is homeomorphic to one of the phase portraits of Figure 4.6 .

E48

E46

Figure 4.6 . Phase portraits of systems (B2.b) .

E47



Proof. By making a linear change of coordinates plus a translation we can
assume that the expression of the QS1 is given by i = Lx2 -}- Mxy + Ny',
y = y 1- &2 + mxy + ny' . If L :~ 0 we can assume that L = 1 and ~ is either 1
or 0 (in coordinates xl = Lx and either y1 = Ley/¿ or yl = y, respectively) . If
L - 0, since the origin must be a saddle-node, M must be zero and we have
i =. Ny2 , y = y +&2 + mxy + ny2 ; again we can assume that N = 1 and
either 2 = 1 or ~ = 0 . Hence, since L = 1 or, L = 0 and N = 1, we have that
the phase portrait in a neighbourhood of (0, 0) of our QSl is one of the phase
portraits given in Figure 4.7 where we have represented also the vector field on
the axes .
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(a) C=1, N >0

	

(b) 1=1, N=0

	

(c)

	

2=1, N <0

(d)

	

C=0, N >0

	

(e)

	

1=0, N=0

	

(f)

	

.2=0, N <0
Figure 4.7 . Possible local behaviours of a saddle-node .

Now, we shall study every one of these cases, taking into account that the
indices of the infinite singularities are (1, 1, -1) and by using Proposition 3.2 .
Consider for instante case (a) . By Proposition 3.2 there are no critical points
at infinity for our system on the directions given by the straight lines x = 0 and
y = 0 . Since there are exactely three inifinite singularities and by taking the
vector field on the axes we have that this case can be divided into the following
two subcases :

(al) The QS1 has an infinite singularity in the first quadrant and it has
two infinite singularities in the second one .

(a2) The QS1 has three infinite singularities in the first quadrant .
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We study now the subcase (al) . The a-limit of Cl mus.t be p' (see Figure
4.8) . Hence the w-limit of C3 is r . The w-limit of C2 can not be r' because this
point could not have hyperbolic sectors (look at the vector field on the straight
line r'or) and by consequence the w-limit of C2 is p . The point q must have
a stable separatrix of two hyperbolic sectors (this is because the points with
w-limit either p or r in the interior of the closed curve opqrp are open sets) .
Hence q' also must have an unstable separatrix, and the phase portrait is the
one of Figure 4.8 (Le . it is E48 of Figure 4.6) .

Figure 4.8 . Phase portrait of a system (B2.b) when it satisfies the hypoth-
eses (al) .

lf we use the same kind of arguments for the other cases and subcases we
obtain E44 , E4s, E4s, E47, and E48 of Figure 4.6 for the subcase (a2) of Figure
4.7, E49 of Figure 4.6 in the case (e), and there are no possible phase portraits
for the remainder local behaviours of Figure 4.7 .

In order to find QS1 that have the phase portraits of Figure 4.6 we consider
system (III.s.l) . It is easy to show that this system when ~ = 0, n < 0 and
m > 1 has phase portrait E49 of Figure 4.6 . In order to obtain all the other
cases we shall study system (III.s.l) under the condition ~ > 1 . The phase
portraits that we shall obtain are summarized in Table 4.2 .
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Table 4 .2 . Realization of the phase portraits of Figure 4.6 .

Consider system (III.s .l) with £ > 1, that is i = y + x2 , y = y + ex2 -}-
+rraxy+ny2 , with n :~ 0, m2 -4n(e-1) < 0, (m-1)2 -4nQ > 0, ando > 1 . The
finite critical point is a saddle-node with critical directions y = 0 and y = x .
The critical points at infinity are a stable node in the (0, 0) of the local chart U2 ,
a saddle point on the point of U1 corresponding to the direction of the straight
line y = y+x, and a stable node corresponding to the direction of the straight
line y = y_x where 1 < y- < y+ and y± = (-(m-1)f((m-1)2-4n~)1/2/(2n) .
The straight line y = y+x+(y+-y+)/(m+2ny+) is an invariant straight fine if
y+ = -m/n and a straight line without contact if y+ :~ -m/n . This fact allow
us to determine that the phase portraits for our system when y- < -m/n < y+
(resp . -m/n = y+ ) is homeomorphic to E44 (resp . E45) of Figure 4.6 . When
y+ < -m/n we have that only the three phase portraits E46 , E47 and E48 are
topologically possible . Note that in the space of parameters e, m, n, the subset
K --- {(~, m, n) E R3 : ~ > 1, m2 -4n(£-1) < 0, (m -1)2 -4n£ > 0} is a connex
set . So if we find two values of (~, ni, n) E K such that the phase portraits of
their associated systems are E45 and E48 we will have proved that the phase
portraits E46 and E47 exist some values of ( .e, m, n) belonging to K .

Two points of K that have the phase portraits E48 and E45 are, for in-
stance, k = (2.256, -2 .8,1.6) and (4, -2,1/2) respectively. In order to prove
that the phase portrait associated to the point k E K is E48 we can consider
the vector field on the straight line y = x/2 (see Figure 4.9) .

System with has the phase portrait

(III .s .1) n>0, y_ <-m/n<y+ E44

(111 . .9 .1) n>0,-m/n=y+ E4s

(III .s .1)

n>0, and for some

values of e,m,n such

that -m/n>y+

E4s

E47

E48

(III .s .I) I n<0,2=0,m>1 I E4s
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Figure 4 .9 . This QS1 has the phase portrait E48 of Figure 4.6 .

Case (C) . We subdivide these systems in the following subcases :
(C1) Systems (C) with the elementary finite singularity of indices fl .
(C2) Systems (C) with the elementary finite singularity of index 0 .

Case (C1). We do the same study that in the case (B) and we obtain
the following result .

Lemma 4.4 . (i) The phase portrait of a QSl with elementary infinite
critical points and the finite critical point of índex +l and without periodic
orbits is homeomorphic to one of the phase portraits of Figure 4, .10.

(ái) There are no QS1 with two elementary infinite critical points and a
finite critical point of index -1 .

Note that (ii) of the above lemma follows from the Poincaré-Hopf Theorem
and Theorems E and S .

The realization of some phase portrait of Figure 4.10 will be done in the
following section . In fact not all the phase portraits of this Figure will exist for
QS1 .
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Figure 4.10 . Possible phase portraits of systems (C1) . We shall prove in
the following section that not all these pictures are realizables for QS1 .

Case (C2) . The following lemma and table are equivalent to Lemma 4.3
and Table 4 .2 of Case (B2.b) .

Lemma 4.5 . The phase porirait of a QS1 with two elementary infinite
critical points and a finite critical point of saddle-node type is homeomorphic
to one of the phase portraits of Figure 4.11 .

Proof.. By using the same arguments that in the proof of Lemma 4.3 we
obtain Figure 4.7 . Now, we must consider all the possibilities taking into ac-
count Proposition 3.2 . These possibilities are showed in Figure 4.11 . Cases (b),
(c), (e) and (f) of Figure 4.7 give no possible phase portraits . Case (d) gives
the phase portraits E65 and Ess of Figure 4.11 and the remainders follow from
case (a) of Figure 4.7 .

The phase portraits of Figure 4.11 can be realized by studying systems
(II.s.13) and (III.s.3) . The results obtained are summarized in Table 4.3 and
the way to study system (III.s.3) when n > 0 and m < -1 or when n < 0
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and 1 > m > -1 is equivalent to the way in which we have studied system
(III.s.1), to realize case (B2.b) .

When n < 0, if we consider the phase portraits of the QS1-associated to
the points (P, m, n) = (-(m - 1)2 1 .2), m, -0.3) we have that they are homeo-
morphic to E57 when m = -1 and to Eso when m = 0.8 . The study when
n > 0 is similar . Furthermore we can consider it like the boundary of system
(III.s .1) studied in case (B2 .b) and for the values n = 1.6 and m = -2.8 (that
are the same values considered in the study on systems (III:s .l)) its phase
portrait is homeomorphic to E65 of Figure 4.11 .

Table 4.3 . Realization of the phase portraits of Figure 4.11 .

System with has the phase portrait

(III .s .3) n<0, m<-1 Ess

(III .s .3) n<0, m=-1 Es7

(III .s .3)

n<0 ; some values

ot -1<m<1

Ess

Ess

Eso

(III .s .3) n>0,-1<m<1 Esi

(III .s .3) n>o, m=-1 Esz

(III .s .3)
n>o ; some values

ot m<-1
Esa

Eso

Ess

(ZLs .13) I - Ess
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57

E65

	

~~ a6

Figure 4.11 . Phase portraits of systems (C2) .
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5 . Phase portraits for QS1 that can have Iimit cyc1es

Before a study case by case of the phase portraits of the QSl that can
have limit cycles we shall give their expressions in a more suitable way.

Theorem 5 .1 . A QSl that can have limit cycles can be writen in one of
the following forms:

(a) x = y, y = -x + by + xy + ny 2 with n < 0;
(b) x = y + x 2 , y = -x + by + (~ + b)x 2 + mxy with ~2 - 4m < 0 and

+ b < 0 . Furthemore, if m = 1 then P + b q¿ 0 ;

(c) x = y+xy, y = -x+by+mxy+ny 2 with m < 0, (b-m) 2 -4n < 0)-
1

	

x = y+px2+xy, y = -x+by+(~+bp)x2 +(rri+b)xy with p > 0,
=-1, m=0;

(e) ¡ = y+px 2 +xy, y = -x+by+(~+bp)x2+(m+b)xy with p > 0,
(1 + P) 2 - 4pm < 0 .

Proof. By Section 4 and Table 1 .17 we must consider only cases (I.e .4),
(I.e .5), (I.e .6), (II.e .l), (II.e .9), (III.e.l) with m :~ 0, (III.e.2) and (IV6.l),
with a focus or a center at-the origin, see Proposition 1 .9 . Note that the systerrrs
(II .e .3), (II.e.4) and (II.e .5) of Table 1.17, have the unique finite singularity
on the invariant straight line x = 0, so they can not Nave limit cycles .

System (IVe.l) in coordinates x1 = -minix/n, y 1 = my, t 1 = -Inlt/rrt
writes in the form (a) .

System (III.e.l) with 7n :~ 0 and (III.e .2) write in the form (b), putting
+b instead of £, and taking the variables x 1 = -x, y1 = y, t 1 = -t if necessary.

We can assume that a = m = 1 in systems (II.e .l) and (II.e.9) . In
the new coordinates x1 = -(x + d)/d, y 1 = y/d 1 /2 , t 1 = di/2t, tlrey write like
x = y+xy, y = -x+(b-d)y/d 1 /2 -dr / 2xy+ny 2 with dn :~ 0 and b 2 -4nd < 0 .
Putting b instead of (b - d)/d1 / 2 and m instead of -d 1 / 2 we obtain (c) .

Systems (I.e .l), (I.e.2) and (I.e .3) with a point of index 1 at origin and
in coordinates x 1 = x, y1 = y/(-a)' /2, t 1 = (-a)' /2t, write like x = y -
-(-a)1/2x2+xy, y = -x+by+2x 2 +mxy, where either (a+b+2)2-4a(¿+rn) <
0, or b = m, a = ~ + m < 0. Taking the new coordinates x1 = x, y1 = -y,
t 1 = -t and putting p, b, 2 + bp, and m + b instead of (-a)1/ 2 , -b, ~, and
-m, respectively ; we obtain case (e) for the first condition and case (d) for the
second one .

From [L] or Appendix B of [CGL] we can give Table 5.1 that provides the
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focal quantities Wl , W2 and W3 for systems of Theorem 5.1 .

Table 5 .1 . Focal quantities for the QS1 of Theorem 5.1 .

Proposition 5.2 . (i) Systems (a), (b), (d) and (e) of Theorem 5.1 are
semicomplete families of rotated vector fields (SFR) with parameter b, (mod.
y = 0), (mod . y+x2 = O), (mod . y+px 2 +xy = 0) and (mod. y+px 2 +xy = 0),
respectively (see for definitions [Du] and [P1] or Appendix D of [CGL]) .

(ü) System (c) of Theorem 5.1 is SFR with parameter b, (mod . y = 0) in
the half plane 1 + x > 0, and x = -1 is an invariani straight line for the flow
of (c).

The proposition follows easily by direct coinputations .

Theorem 5 .3 . (see the proof in the Appendix) . Systems (a), (b), (c) and
(d) of Theorem 5.1 have at most one limt cycle.

System (e) of Theorem 5.1 under condition (m + b - p)2 - 4(e + bp) < 0
has at most one limii cycle.

Corollary 5.4 . Systems (a), (b), (c) and (d) of Theorem 5.1 have no
limit cycles when b _< 0 or b >_ b*, where b* is a positive function of the other
coefcienís of the aboye systems. Furthermore b* < 2 .

Proof.. From Table 5.1 it follows that VV1 > 0 for systems (a), (b), (c) and
(d) . Then, we know that for our systems, a stable limit cycle rises from the
origin when b ? 0. By Proposition 5.2 our systems are SFR with parameter b.
Hence, we can apply Theorem Dl of Appendix D of [CGL] . Furthermore, in
tllese cases, by Theorem 5 .3, we have that there exists at most one limit cycle
for all values of b. Then we know that the limit cycle that appears from the
origin when b ? 0 grows with b. Since (0, 0) is the unique singularity of our
systems, these limit cycles must disappear in an infinite separatrix cycle for
some value of b, called b* . Of course b* < 2 by Proposition 1 .9 . Hence, by the
property of non intersection of the limit cycles of SFR the corollary follows .
Note that we have not taken into account system (B) with VV1 = 0, Since for
this system we know, by Table 5 .1, that W2 = W3 = 0 and hence the origin is
a topological center when b = 0 . By consequence it has no limit cycles when
b 7~ 0 .

Now, we shall give the phase portraits of systems of Theorem 5.1 case
by case, (without taking into account if some phase portrait has been already
appeared in previous sections) .

System (a) (b) (e) (d) (e)

W1 -n>0 -£(2+m)>0 -mn>0 3p>0 p(1-2£)-m£

W2 it W1-0 - 0 _ - £p(2p+m)(3p-m)(pm-£)
W3 it Wl=W2-0 lop 3£ 2 (3p 2_£)>0
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System (a) . For this system the behaviour in a neighbourhood of infinity
is always the same . Note also that the straight line y = 1 is invariant if b+n = 0
and it is without contact if b + n qÉ 0. Now we show that if b + n >_ 0 system
(a) has no limit cycles . First, we consider the vector field (a) multiplied by the
factor 1/(1 - y) in the half plane y < 1 in which limit cycle can exist . Then we
have

áx (Y/(' - y)) +

	

(-~ + (by + ny')/(l - y)) _ (b + 2ny - ny2 )/(1 - y)2 > 0
y

and by Bendixson criterion (see [L, pp . 238]), we have that system (a) has no
limit cycles .

In [R] there is a numerical determination of the curve b*(n) for which the
limit cycle disappears . Our results plus these numerical results are showed in
Figure 5.1 . In short, the phase portraits of system (a) are drawn in Figure; 5 .2 .

Figure 5.1 . Numerical results obtained in [R] that show the values b*(n)
for which the limit cycle of system (a) disappears .



b -<0

	

0 <b <b*

	

b=b*
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b '
*
< b <-n

	

b=-n

	

b >-n

Figure 5.2 . Phase portraits of system (a) of Theorem 5.1 .

System (b) . From Figure 3.2 we have that the behaviour at infinity of
system (b) can be of four different forms according with m >_ 2, 1 < m < 2,
7n=1or0<m<1 .

The following lemma has a similar proof to the proof of Lemma 20 of
[CGL].

Lemma 5 .5 . System (b) with lb¡ < 2 satisfies the following properties :
(i) The straight láne y = bx + 1/7n is invariant if bm +

	

= 0 and
without contact if bm + ~ :~ 0 .

(ii) If m :~ 2,4 the parabola y = (m - 2)/2x2 - Qx - (Q2 - bQ - 1)
where Q = (bm + M)/(m - 4) is a trajectory of system (b) if Q = b . If Q :~ b
ii is without contact .

(üi) The parabola given in (ü) when Q = b is a separatrix of the
singularáty (0, 0) of the local chart U2 .

In short, by Lemma 5.5, Theorem 5.3, Corollary 5.4, the behaviour at
infinity and the properties of the families of rotated vector fields we obtain
Figures 5.3, 5 .4, 5.5, and 5 .6 (in all these figures it is assumed that £ < 0 to
clarify the evolution) . The figure 5.7 can be obtained integrating the system
(b) .
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b 50

	

0 <b <-Q/m

	

b=-.Q/m

	

b >_Q/m

Figure 5.3 . All the possible phase portraits of system (b) of Theorem 5.1
when m > 2 and the origin is not a topological center .

b 110

	

0 <b <bi

	

b=bi

	

bi <b <-2/2

b=-.Q/2

	

-2/2 <b <-2/m

	

b=-Q/m

	

<b <b*

Figure 5.4 . All the possible phase portraits of system (b) of Theorem 5.1
when 1 < m < 2 and the origin is not a topological center .
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b <0

	

0 <b <-k/2

	

b=-Q/2

Figure 5.5 . All the possible phase portraits of system (b) of Theorem 5 .1
when m = 1 .

b <0

	

0 <b <-2/2

	

b=-2/2

	

b >-C/2

Figure 5.6 . All the possible phase portraits of system (b) of Theorem 5.1
when 0 < m < 1 and the origin is not a topological center .

m >2

	

1 <m

	

-2

	

0 <m <1

b > -2/2

Figure 5.7 . Phase portraits of system (b) of Theorem 5 .1 with e = b = 0 .
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System (c) . This sytem has the straight line x = -1 invariant . By
Theorems E and S we can study the behaviour at infinity and we obtain three
different cases according with 0 < n < 1, n = 1 and n > 1 . By using the sarne
techniques that in the above case we obtain Figures 5.8, 5.9 and 5 .10 .

Systems (d) and (e) . First we study the behaviour at infinity of these
systems and we obtain the different possibilities showed in Figure 5.11 . These
possibilities depend on the sign of A = m -f- b + p and on the number of infi
nite singularities . Note that if systems (d) and (e) have two or three infinite
singularities then A y¿ 0 .

We can prove that if A < 0 then b <_ -2 and hence the origin is a stable
node . This fact implies that in this case the phase portraits of systems (d) and
(e) with two or three infinite singularities are one of the pictures of Figure 5 .12 .

For system (e) we can give a result similar to Corollary 5.4 .

Proposition 5.6 . System (e) under conditions (m+b-p)2+4»bp) < 0
and with b < 0 has no limit cycles .

Proof. From Theorem 5.3 we know that system (e) under the condition
(m+b-p)2 +4(£+bp) < 0 has at most one limit cycle . Furthermore by looking
at Theorem A5 of the Appendix we can afirm that it can exist only when b 5~ 0
and it is hyperbolic . Note also that system (e) has one (resp . two) singularities
at infinity if (m + b -p)2 -}- 4(P + bp) < 0 (resp . = 0) . So, if system (e) has one
infinite singularity, by Figure 5.11 and the hyperbolicity of the limit cycle the
result follows studying the stability of the origin . Now, we consider the case
in which (e) has two infinite singularities . This case is the boundary of the
above one . Note that if the limit cycle would exist, by Theorem A5 it would
be hyperbolic and hence it would persist by changing ~ by £ -}- e, with e < 0, in
system (e) . In short, it does not exist .

By Proposition 5.6 and the above results we obtain that when systems
(d) and (e) have a unique infinite singularity their phase portrait are the ones
showed in Figure 5 .13 .

The phase portrait of system (d) will be now determinated by using these
last results, the properties of the SFR, and the results Section 7 of [CGL]
(after taking a suitable change of coordinates) . Note that the number of infinite
singularities is three, two or one according with (b + p)2 - 4 > 0, = 0 or < 0,
respectively . The phase portraits of system (d) are showed in Figure 5.14 .
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b <0

	

0 <b <b*

	

b=b*

b <0

	

b >0

Figure 5.8 . Phase portraits of system (c) of Theorem 5.1 when 0 < n < 1 .

Figure 5 .9 . Phase portraits of system (c) of Theorem 5.1 when n = 1.

Figure 5.10 . Phase portraits of system (c) of Theorem 5. 1 when n > 1 .
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A>0

	

A <0

Figure 5.11 . Phase portraits at infinity for systems (d) and (e) of Theorem
5.1 , where A = m + b + p.

el

Figure 5.12. Phase portraits of systems (d) and (e) of Theorem 5 .1 with
two or three infinite singularities and m -{- b -}- p < 0.



Figure 5.13 . Phase portraits for systems (d) and (e) of Theorem 5 .1 and a
unique infinite critical point .

b <-2-p

	

b=-2-p

	

-2-p< b `0

	

0 <b <2-p
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b=2-p

	

2-p <b <b*	b=b*	b>b*

Figure 5.14 . Phase portrait of system (d) of Theorem 5 .1 ( in this figure
it is assumed that 0 < p < 2, in general the limit cycle can appear in pictures
with (*)) .
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The remainder case (e) is the most complicated one . By results of [B], if we
take a system (e) with the conditions W1 = W2 = 0 and W3 > 0 we can modify
its coeficients in order to obtain a QS1 of type (e) with at least there lilnit cycles
surrounding the (0, 0) . Examples of QS for which there limit cycles appear froln
a weak focus are given in severál papers, see for instante [Che], [P2], [Sh] . In
order to give a dynamic interpertation of the more complete evolution of the
phase portraits of this system we will fix the values of p arid m such tliat
-1 + 2(pm)1/2 > 0 and m -p < 0 (the other cases are similar and they give no
new phase portraits) . Hence we have that -1-2(pm)1/2 < £ < -1+2(pm)1/2 .

The number of infinity singularities is there, two or one according with
E? > B = (-b2 - 2(p -}- m)b - (m - p) 2 )/4, E? = B or Q < B, respectively.
Furthermore, if _ -bm the straight line y = bx + 1/m is invariant by the flow
of system (e) .

In Figure 5 .15 we represent the plane of parameters b, P, the conditions of
number of singularities at infinity, and the existente of an invariant straight
line when t? = -bm. These are some regions for which the pliase portraits are
already determined using the above considerations . These results are sunima-
rized in Table 5 .2 . In this Table there are some new phase portraits that have
been obtained by studying the vector field (e) on the straight lines y = bx+l/rra,
and y = yi x + (y, - by 1 +1)/(m + b - y1 ), where y1 is the slope of the direc-
tion associated to the lower singularity at infinity in the local chart U1 . Also,
we have taken into account that system (e) under condition 2 = -bm can be
written like system (c), transporting the invariant straight line to x = -1 . All
its possible phase portraits are showed in Figure 5.16 .

e
-1 .2 (P1) 1/2

R 7

1 2 b

R S

Figure 5 .15 . Plane of parameters b and t? for the system (e) of Theorem
5 .1 when m and p are fixed and such that -1 -2(pm)1 /2 < 2 < -1 +2(pm) 1 /2 ,
and m - p < 0 . Here B = (b2 - 2(p + m)b - (m - p)')/4 .
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<-bm

	

Q=-bm, b <m-p

	

Q >-bm, or .Q=-bm, b >m-p

(this

	

case gives the pictures)

e8

Figure 5.16 . Possible phase portraits for system (e) different from el, e2, e3

and e4 of Figures 5 .12 and 5.13 . The simbol -e is defined in Figure 3.1 . The
symbol E denotes that we do not know the stability of the grafic . In picture
e8 we do not know either the number of limit cycles .
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Note that, at this moment, the realization of most of cases of Figures 4 .4
and 4.10 have been already done in the study of systems (a), (b), (c), (d) and
(e) . The results obtained are in Tables 5.3 and 5 .4 .

Table 5.2 . Realization of some phase portraits of Figures 5.12, 5 .13 and
5 .16 by system (e) of Theorem 5.1 . The regions Ri, Li, and Pi are given in
Figure 5.15 .

Table 5.3 . Realization of the phase portraits of Figure 4.4 .

Table 5.4 . Realization of some phase portraits of Figure 4.10 .

System of Theorem 5.1 has the phase portrait

(a) with b>-n E31

(a) with b=-n E32

(a) with b" <b<-n E33

(a) with b= b * E34

(e) with b=b',n>1 E35

(a) with b<0 E36

System of Theorem 5.1 has the phase portrait

(d) .with b=-2-p Eso

(c) with b<O,n=1 E51

(e) with b=2-p E'S2

? E53,E54,E55

Phase portrait Region Phase portrait Region

el R1 e6 L5,Rs

e2 L1 Ls,Rs

e3 R2 elo L2

e4 R5 el l P1

e5 R3 e12 L3

e6 L4 e13

e7 L5 e14 ?



no limit cycles

exactly one limit cycle
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In short, from all the results that we have obtained since now, the problems
that we do not have solved yet, in order to find all the possible phase portraits
for QS1, taking into account its number of limit cycles, are the following :

(P1) Determine the maximum number of limit cycles that can have
phase portraits es , e7, e8 and e9 of Figure 5.16 .

(P2) Determine if there is some QSl with phase portraits el3 and
el4 of Figure 5 .16 (Note that this problem is equivalent to the problem of
determining QS1 with phase portraits E53, Eso and E55 of Figure 4 .10) .

We do not solee problem (P1) . We know that there are some QS with
these phase portraits with at least three limit cycles, but we have not found
a bound for the number of limit cycles for system (e) of Theorem 5.1 with
condition (m + b - p)2 + 4(¿ + bp) > 0 .

In Figure 5 .17 we represent all the information about limit cycles that we
have for system (e) . The zone dotted represents the zone for which a limit
cycle appears from the origin . This information will be useful in order to give
a partial answer to problem (P2) .

---------------
no limit cycles

point with W1=0(k=p/(2p-m)> 0)

no limit cycles

at most one limit cycle

255

Figure 5 .17 . Knowlege about limit cycles for system (e) of Theorem 5.1 in
the space of parameters P, b.
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Lemma 5 .7 . Phase portrait e14 of Figure 5.16 is not realizable for QS1.
Furthermore if piciure e13 of Figure 5.16 is realizable, it is ¡he phase portrait of
some system of type (e) of Theorem 5.1 with condition (m+b-p)2+4(2+bp) = 0.

Proof:: Note that the two infinite critical points of a QSl that has phase
portraits 61 3 or 614 must be of type S . There is a few number of cases such
that they have these kind of points at infinity : (I .e .6), (I.s .9), (II .e .5), (II.e .9),
(II.s.8) and (II.s .13) . The cases (II.e .5), (II.s.13) and (II.s .8) with condition
(E) have an invariant straight line through the origin . The finite critical point
of systems (II.s.8) with condition (D) and (I.s .9) with 2 -}- b qÉ 0 is a saddle-
node . The phase portrait of system (I.s .9) with condition (D) and 2 + b = 0
can not be e13 or e14 (look at the vector field on the straight line y = 0 which
is without contact and study the infinite singularities) . The case (II.e.9) has
been already studied . So the unique case that can have phase portraits e13
or e14 is (Le.6) . This case is equivalent to system (e) of Theorem 5.1 with
condition (m -}- b - p)2 + 4(2 + bp) = 0 and to system (d) of the same theorem
with condition (b -p)2 - 4 = 0. The second one has been already studied .

So, in order to prove that the phase portrait e14 is not realizable for QSl,
we only must consider case (e) with condition (m + b - p)2 -{- 4(2 -}- bp) = 0.
By Proposition 5 .6 we know that this phase portrait is not realizable for b < 0.
When b > 0, we can prove also that phase portrait e14 is not realizable . In
this way consider Figure 5.17 and use the same argument that in Section 7 of
[CGL] . Note that we can not utilize the same argument in order to prove that
phase portrait e13 is not realizable because in this case, system (e) is not a SFR
on the parabola (m + b - p)2 + 4(2 + bp) = 0.

Appendix. Theorems on uniqueness of limit cyc1es for QS .

In this appendix we enunciate some results on uniqueness of limit cycles
for QS. By using these results we will prove Theorem 5 .3 .

Theorem A1 . (see [Y1], [Y2, pp . 269]). Consider the system

(E.1)

	

i = -y + bx -}- 2x2 + mxy + ny2,

	

y= x .

Then the following hold.
(I) If b = 0, m(2 + n) = 0, then (E .1) has a center at (0, 0) . If b = 0,

m(2 + n) 7É 0, then (E .1) has no periodic orbits .
(II) If bm(2 + n) > 0 then (E.1) has no periodic orbits .
(III) If b?n(2 -}- n) < 0 and 0 < lb¡ < b* = f(2, m, n) where f is a

function of 2, m, n then (E.1) has one and only one limit cycle, which grows as
lb¡ increases and becomes a singular cíele (homoclinic orbit) when lb¡ = b* . If
lb¡ > b*, then (E.1) has no periodic orbits .

Theorem A2. (see [Ch]) . The system

(E.2)

	

i = -y + dx +2x2 ,

	

y = x(1 + ax + by),
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has at mosi one limit cycle surrounding the origin.

Theorem A3. (see [CZ, Theorem 2]) . Given the system

(E.3)

	

i = y(x + 1),

	

y =-x+ cy +ax2 + bxy + dy2

the following hold .
(i)Ifa>_O,c>0,d>0or-1<a<0,e>0,d>0,a+d>0,

then it has at most one limit cycle.
(ii) If bc(a + d) > 0, it has no limit cycles on the half plane x > -1 .

Theorem A4. (see [Z, Theorem 5]) . The system

(E .4)

	

i = y +y2 ,

	

y = -x + ay + bxy + ey2,

has at most one limit cycle if b < 0.

Theorem A5. (see Theorem A of [CGL]) . If the function
F(x, y)g(x, y) = [(x - by)P2 (x, y) +YQ2(x, y)][XQ2(x, y) - yP2 (x, y)] associated
to the diferential equations

(E.5)

	

i = y+ P2(x, y),

	

y =-x+ by + Q2(x, y),

does not change of sing then this system has al most one limit cycle that su-
rrounds ¡he origin, and ii is hyperbolic . Furthermore, when b = 0 it has no
limii cycles .

Proof of Theorem 5.3 : System (a) writes in the form (E.1) with 2 = n,
m = 1 and n = 0 after interchanging x and y . So by Theorem A1, system (a)
has no limit cycles when either b < 0 or b > b*, and at most one limit cycle
when0<b<b*forsome0<b*=f(n)<2 .

System (b) in coordinates xl = x, yl = bx - y writes like i = -y +
+bx + x2 , J = x(1 + my - (2 + bm)x) and hence, from Theorem A2, it has at
most one limit cycle .

System (c) is already in the expression (E .3) with c = b, a = 0, b = m
and d = n. So, system (c) has at most one limit cycle when b > 0 and has no
limit cycles when b <_ 0 (note that x = -1 is an invariant straight line for our
system and the critical point is in the half plane x > -1).

System (d) in the new system of coordinates x1 = bx - y, yl = x writes in
the form i = y + y2,

y = -x + by - xy -1- (p -}- b)y2. So, since the coefficient of
xy is -1, by Theorem A4 system (d) has at most one limit cycle .

The expression of system (e) is like (E.5) .

	

So P2(x, y) = px2 + xy,
Q2 (x, y) = (B -{- bp)x2 + (m + b)xy, and hence F(x, y)g(x, y) = x2 (my2 -}- (~ +
+1 )xy+px2 )((Q+bp)x2 +(m+b-p)xy -py2) < 0 when (m+b-p)2+4(~+bp) < 0 .
Therefore we can apply Theorem A5, and system (e) with the above condition
has at most one limit cycle.

New proofs of some of these theorems are recently given by Coppel, see
[C2] and [C3] .
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