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- ON THE ANGULAR LIMITS OF
BLOCH FUNCTIONS

J.J. CARMONA*, J. CUFf* AND CH. POMMERENKE**

Abstract

This paper contains a method to associate to each function f in the litile
Blech space another function f* in the Bloch space in such way that §
has a finite angular limit where f* is radially bounded. The idea of the
method comes from the theory of the lacunary series. An application to
conformal mapping from the unit disc to asymptotically Jordan domains
is given.

1. Introduction and main results

Let D dencte the unit disk and T = 9D. A Bloch function [1] [B, p. 268] is
a function f analytic in D such that

(1) IFlls = 1£(O) + ISIIlfl(i — |2*}1f'(2)} < oco.

With this norm, the Bloch functions form a Banach space B. The closure in
B of the polynomials is a subspace By that consists of all f € B such that

(2) (L= 2P f(2) 0 as [2] — 1.

For Bloch functions, radial and angular limits are identical [7] [8, p. 268], that
is,

frQy—alr == fle) »alz = (, 2 € A(()
holds for each { € T where A{(} is any triangle in D with vertex {. Furthermore
(8, p. 269]

sup [f{r{)| < oo = sup [f(z)| < ce.
0<r<i s€A{C)

" Supported in part by the grant PB85-0374 of the CICYT, Ministerio de Educacién y Clencia,
Spain.
**Supported in part by the Institut d'Estudis Catalans and by the Goethe~Institut.



192 J.J. CARMONA, J. CUFf, CH. POMMERENKE

Each bounded analytic function belongs to B but not always {o Bs. Things
are very simple for the special case of Hadamard gap series

(3) f(z) =) bez™, “+1>,\>1 (k=0,1,...).

In this case {1] [13, vol. T, p. 247]

f € B < suplby| < oo,
FeEBy=b -0 (k- o0)

FEH® &) || < oo
k

If a gap series has radial limits on a set of positive measure then 3, |b:|* < o0 }
(13, vol. 1, p. 203]. It follows that

(4) folzy =3 #7422 (2 €D)
k=1

belongs to By but has angular limits almost nowhere on T.

There is a close connection with conformal mappings [8, p. 269]. If g is an
{injective) conformal mapping of D then f = clogg’ € B holds for all ¢ € €.
Conversely if f € B and |¢| < 1/]|f||g, then the function g defined by f = clogg’
maps D conformally onto & domain bounded by a Jordan curve J. Furthermore
f belongs to By if and only if [9] the curve J is asymptotically conformal, i.e.
if

|6 — wl + |w — a

—b ke J
wE J{2,b) |5 — al —lasla—b—0 ab¢

where J(a, b} is the (smaller) arc of J between a and b.

We shall describe a method to reduce the existence problem of finite radial
(=angular) limits for By to the problem of radial boundedness for B.

Theorem. If f € By then there is a function f* € By C B such that, for ali
CeT, . _
sup |f*(r{}} < oo = Iini Hr¢) emsts # oo,

This generalizes a result on Hadamard gap series by Gnuschke [5]. We shall
develop every Bloch function into a series of polynomials that is analogous to
a gap series.

Using a method of Noshiro and T. Wolff [11], it can be shown [3] that each
Bloch function is radially bounded on a set that has positive capa,cﬁ.y on every
arc of T. Hence we obtain from the theorem:



ANGULAR LIMITS OF BLOCH FUNCTIONS 183

Corollary 1. If f € B then there is a set EC T with cap (ENI) > 0 for
every arc I of T such that

(5} ii_’rr; F(r¢) exists £ o0 for { € E.

Previously it was only known [6] that a function in By has finite radial limits
on an uncountably dense set. The present method, however, does not imply the
fact [6] that the image set of angular limits has always positive linear measure.

It was asked in [4] whether all f € B satisfy

dim {Ce€T rsgpif(?‘C)I <oo}=1,

where dim denoctes the Hausdorff dimension. If the answer turns out to be
positive, then the theorem would imply that all f € By have finite angular
liznits on a set of Hausdorff dimension 1. This would be much stronger than
our corollary because already dim E > 0 implies cap ¥ > 0. Note that it is not
possible to replace dimension 1 by positive (Lebesgue) measure as the function
fo defined by {4} shows.

Much more is known about infinite angular limits. Recently J.M. Anderson
and L.D. Pitt [2] have proved that each Bloch function has either finite radial
limits on a set of positive measure or satisfies

dim {{€T: Re f(r{) > +o0asr > 1} = 1.

This implies that every conformal map has a finite angular derivative {possibly
=0} on a set of dimension 1.

Corollary 1 implies a result on the unrestricted boundary derivative for uni-
valent functions; see [6] for the corresponding weaker resuit.

Corollary 2. Let g map D conformally onto the tnner domain of an asymp-
totically conformal Jordan curve. Then there is a set E C T with cap (ENI) > 0
for every arc I of T such that

9{z) — g({)

§{Q) = T extsts # 0, oo for { € E.

2. A series expansion of Bloch functions

We consider an analytic function

(6) fz)=> anz"forz €D

n—=0
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and define polynomials po(z) = ag + a1z + a22”® and

2" 2k+1
m—-2k—2 PARL I T
y R Y e
n—1 n—1
n=2%—142 n=2%41

() pel2)=

for £ =1,2,.... Induction shows that

™ i 2l gmh_ng1
Pn=Sans 5 Tt
k=0 =0 n=2741 n-

and since lim sup |a|*/™ < 1 it follows that

(8) F2y= pi(2) for z€D.

This expansion shares many properties of lacunary power series; see for instance
(16) and Proposition 3 below.

The next two results are essentially known. They are implicit in the work
of Zygmund [12]{13, vol. 1, p. 115 f] and actually hold in a slightly different
form in the more general context of Besov spaces. For convenience we shall
give proofs,

Proposition 1. If f € B then

{9) IPklloo = sup pe(2)| < 8l flls for k=10,1,...,
x| <1

and if f € By then
{10) lpellec = 0 a8 & — co.

Proof: We may assume that || f|jg = 1. It easily follows from {1} that |ag} <
1, |a1] < 1 and |az| < 2 so that [po{{)] < 4 for [(| < 1. Form = 1,2,..., we
consider now the polynomial

(1) qm(zJ—(“"‘) S net Y @m -1

p=0 y=m

We see from (8) that

1 4 > - = sy
o |z|=rf {2)gm(2C)2 2de = ;(V + 1¥v + 2)a,,+2r2 M+
2m—2

+ Z (2m — v — D)(v + 2)ay 427",

V=T
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A simple calculation therefore shows that

- [ =1 (e dzdy =

m+1 2m

=Y antnte Y T

n=2 n=m=+2

Hence it follows from (7) that, for £k =1,2,...,

@ w0-; [[a-1p ()[qza(cz) Gormr((7)) dady.

We write y(r} = max|,=~{1 — [2[*)[f'(2)]. Since

2

m

1_
lgzm{2) — Qm(z)J = |22m + 22m| E

-2

by (11), we see from (12) that
3 [t 2r . , |
lpe{C) < ;] y(r)r™ 1 (/ I4ret 4 oo rm? e'(m_l)‘|2dt> dr <
0 0

1
< 6/ y(rir™ Imdr < 86,
a

with m = 27!, because y(r) < 1. If f € By and € > 0 then, by (2), there is
p < 1 such that y(r) < € for p € r < 1. Hence the last integral is less than
mp™*t! + ¢ < 2¢ for large m which implies (10}. W

Proposition 2. If ||pifleo s bounded then f € 8 and

(13) £z < 16sup [|pellco-
k>0

I llpellec — 0 a8 & — oo then f € By.

Thus the Bloch norm is equivalent to the norm sup; ||pilloc Where the poly-
nomials py are defined by (7). In the case of a lacunary series this norm is
essentially the same as sup |bel.

Proof: Let ny = 251, If & > 0 we can write

(14) pi(z) = 2™ ge(2), deg {ge) < 3nx — 1, JIgklloo = {IP&lloo-

Hence it follows from Bernstein’s inequality [13, vol. I, p. 11] that, for
lz| €7 < 1,

(15) [25(2)] = |(ne + 1)z 4 gu(2) + 2 g (2)] <
<f(ne + 1™ + (B3 — 1" P gk lloo < 4nem™ |9k loo-
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Therefore we deduce from {1) and (8) that
(16) Iflls < 2lipolles + sup (1 - r?) Z‘ink?‘"" P&l co-
E=1
Since (this is a standard estimate for gap series)
1 o3 o0
> (.Em e L=

we conclude that
I£1ls < 2[lpolles + lsiti? I lloo

which inplies 813). The final assertion of Proposition 2 is deduced in a similar
way from {14}. B

Proposition 3. Let fe B. Ifsx =po+p1+ - +px andrp = 1—27% then
(17) [flriz) — sx{2)] £ 30\ fllg for |2l < 1.

Proof: We may assume that |[f(lz € 1. Then ||pjfl« < 6 by Proposition 1.
We see from {8) that, for [2]| <1,

flrnz) = su(z) = D _(pslrer) = pi(=)) + ) pilraa).
j=0 i=k+1

The first sum is bounded by
- k - f—1
;;(1 - ?"k}f?lg lp (O < 2 §4 2.6 <24
because of (15), and we see from {14) that the second sum is bounded by

] Z APy Z exp(—?j_l_k):f)’iexp{—T)<6‘ |

J=k+1 j=k+1 v=0

3. Proof of the main results

Proof of the theorem: Let f € Bg. We obtain from Proposition 1 that there
is a decreasing sequence {£;) such that

(18) Iptlloo < €} for k=0,1,...
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where p is given by (7). We define

(19) F=3rn n=c'pn (k=0,1,..)

k=0

This coincides with the expansion (8) of f*.
Since ||p;lloo < €& by (18), we conclude from Proposition 2 that f* € By.
Writing s} = pj + p] + - - + pf, a partial summation gives

N Nt
D epi =ensh+ 3 (e —erpr )k
k=0 k=8

Let now |f*{r{)| be bounded in 0 < r < 1 for some { € T. Proposition 3 implies
that |s3((}| is also bounded in k. Since s}(r() is continuous in 0 <+ < 1 for
each k and since g — £r4; > 0, we easily deduce that

ok

fr¢) = (e — exsn)si(r)

k=0
is uniformly continuous in 0 < v < 1 and therefore has a finite imit asr—1. A

Proof of the Corcllary: The function f = log g’ belongs to By and therefore
has a finite radial limit on a set E C T with cap (ENT) > 0 for every arc I of
T.

Let now ¢ € E. Then ¢' has a finite nonsero radial limit at ¢ and it follows
{8, p. 305] that

Q- eO
o 70

exists. Since J is asymptotically conformal, we conclude from & theorem of
Warschawski [10, Satz I1] or from [9, Corollary 3| that the unrestricted deriva-
tive exists. W
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