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Abstract

ON THE ANGULAR LIMITS OF
BLOCH FUNCTIONS

J .J . CARMONA* , J . CUFf* AND CH . POMMERENKE**

This paper contains a method to associate to each function f in the little
Bloch space another function f

* in the Bloch space in such way that f

has a finite angular limit where f
* is radially bounded . The idea of the

method comes from the theory of the lacunary series . An application to
conformal mapping from the unit disc to asymptotically Jordan domains
is given.

1 . Introduction and main results

Let D denote the unit disk and T = aD. A Bloch function [1] [8, p . 268] is
a function f analytic in D such that

(1)

	

IIfl1a = If(0)I + sup (1 - IZI 2 )If l (z)I < oo .
Ix1<1

With this norm, the Bloch functions form a Banach space 13 . The closure in
B of the polynomials is a subspace BO that consists of all f E 13 such that

(2)

	

(1- Izl 2 )Ifl(z)I --> 0 as Iz1 --, 1.

For Bloch functions, radial and angular limits are identical [7] [8, p. 268], that
is,

f(r() -> a (r -4 1) => f(z) --> a (z -> (, z E A«))

holds for each ( E T where 0«) is any triangle in D with vertex ~ . Furthermore
[8, p. 269]

sup If(rC)I < oo => sup If(z)I < oo .
O<r<1 ZEAM
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are very simple for the special case of Hadamard gap series

In this case [1] [13, vol . I, p . 247]

Each bounded analytic function belongs to 8 but not always to 80 . Things

k=0

bkZnk

	

nk+1 > A > 1

	

(k = 0,1 . . . . ) .
nk

f E 13 ~i sup 1 bk 1 < oo,

f E B o t=> bk ` 0

	

(k- oo),

fEH°°~1lbkl<00 .
k

If a gap series has radial limits on a set of positive measure then Ek lbkl 2 < oo .
[13, vol . I, p . 2031 . It follows that

fo(z) = j: k-1/2Z2k

	

(z E D)
k=1

belongs to 80 but has angular limits almost nowhere on T .
There is a close connection with conformal mappings [8, p . 269] . If g is an

(injective) conformal mapping of D then f = c log g' E 13 holds for all c E C .
Conversely if f E 13 and lcl < llll f li s , then the function g defined by f = clogg'
maps D conformally onto a domain bounded by a Jordan curve J . Furthermore
f belongs to 80 if and only if [9] the curve J is asymptotically conformal, Le .
if

lb-wl+lw - al
m(áb)

	

lb-al

	

-' 1 as (a - bl -> 0, a, b E J
w

where J(a, b) is the (smaller) arc of J between a and b .

We shall describe a method to reduce the existence problem of finite radial
(=angular) limits for Bo to the problem of radial boundedness for 13 .

Theorem. If f E 13 0 then there is a function f* E 13o C 13 such that, for all

SET,
sup if*(ro)l < co =~> lim f(ro) exists

	

:~ oo.
r

This generalizes a result on Hadamard gap series by Gnuschke [5] . We shall
develop every Bloch function into a series of polynomials that is analogous to
a gap series .

Using a method of Noshiro and T. Wolff [111, it can be shown [3] that each
Bloch function is radially bounded on a set that has positive capacity on every
arc of T . Hence we obtain from the theorem :
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Corollary 1. If f E So then there is a set E C T with cap (E fl I) > 0 for
every are I ofT such that

Previously it was only known [6] that a function in 13o has finite radial limits
on an uncountably dense set . The present method, however, does not imply the
fact [6] that the image set of angular limits has always positive linear measure .

It was asked in [4] whether all f E 13 satisfy

where dim denotes the Hausdorf£ dimension . If the answer turns out to be
positive, then the theorem would imply that all f E So Nave finite angular
limits on a set of Hausdorff dimension 1 . This would be much stronger than
our corollary because already dim E > 0 implies cap E > 0 . Note that it is not
possibly to replace dimension 1 by positive (Lebesgue) measure as the function
fo defined by (4) shows .
Much more is known about infinite angular limits . Recently J .M . Anderson

and L.D . Pitt [2] have proved that each Bloch function has either finite radial
limits on a set of positive measure or satisfies

dim{SET : Re f(ro)-++ooasr-->1}=1 .

This implies that every conformal map has a finite angular derivative (possibly
=0) on a set of dimension 1 .

Corollary 1 implies a result on the unrestricted boundary derivative for uni-
valent functions ; see [6] for the corresponding weaker result .

Corollary 2. Let g map D conformally onto the inner domain of an asymp-
totically conformal Jordan curve . Then there is a set E C T with cap (Ef1I) > 0
for every are I of T such that

g,«) =

	

lim

	

g(z) - g(0 exists qÉ 0, oo for ( E E.,-~,ZED

	

z -

2. A series expansion of Bloch functions

We consider an analytic function

lim f(ro) exists qL oo for ( E E.

dim {~ E T : sup lf(rol < oo} = 1,

00(6)

	

f(z) = E anz" for z E D
n-0



194

	

J.J . CARMONA, J . CUFf, CH . POMMERENKE

and define polynomials po(z) = ao + al z + a2z2 and

2

Pk(z) =

	

1:

	

2n - 2k - 2 anzn +

	

E

	

2k

+n
=i+ -

anzn
n-1

n=2k-1+2

	

n=2k+1

for k = 1,2 . . . . . Induction shows that

2°` 2-+1

Pk(z) = E anzn +
k=o n=o n=2m+1

and since lim sup ¡al l/n < 1 it follows that

(g)

	

f(z) = E Pk(z) for z E ® .
k=o

and if f E Bo then

(10)

Proposition 1 . If f E 13 then

We see from (6) that

J IPk J I . --> 0

	

as

	

k --> oo.

1 - z,
y

	

m-1

	

2na-

(11)

	

-

	

_
E (V

+ 1)zv +1 z �=0

	

V=m

This expansion shares many properties of lacunary power series ; see for instance
(16) and Proposition 3 below .
The next two results are essentially known . They are implicit in the work

of Zygmund [12][13, vol. I, p . 115 ffl and actually hold in a slightly different
form in the more general context of Besov spaces . For conveniente we shall
give proofs .

(9)

	

JIpkJI . -

	

sup IPk(z)I C 6 11f lIt3 for k = 0,1, . . . ,
lzl< 1

Proof.. We may assume that Ilf JIL3 = 1 . It easily follows from (1) that Jao1 <

1, ¡a l ¡ <_ 1 and Ja2 l < 2 so that Ipo(« < 4 for 1(1 < 1 . For m = 1,2, . . ., we
consider now the polynomial

(2m - v - 1)z° .

1

	

rn-1
~

	

f'(z)gn,(z~)z-2dz =

	

(v + 1)(v + 2)av+2r2V¡v+
2ri

2m-2+ 1: (2m - v - 1)(v + 2)av+2r2v.

V=n6
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A simple calculation therefore shows that

1 11 (1 - (zl2)f(z)4m(Cz)z-2dxdy =

m+1 2m
-

	

a,(n-2
+

	

2m

	

2m- n + 1 anbn-2 .
n-1n=2 n=m+2

Hence it follows from (7) that, for k = 1, 2, . . .,

(12)

	

Pk«) = 1 11 (1 - IZI 2)f~(Z) (g 2 [42«z) - 42k-1«z)] dxdy .

We write y(r) = max,z,=,.(1 - IZI 2)Ift (z)I . Since

by (11), we see from (12) that

(13)

_ m 2

Ig2m(z) - gm(z)I =
I2zrn

+ z2ml 11 z

1

	

2n
IPk(0I C 3 1 y(r)r` + re" + . . . + rm-1 ei(m-1)t I 2 dt~ dr

0

	

0

<6 y(r)r m-1mdr < 6,

with m = 2k-1 , because y(r) < 1 . If f E 80 and e > 0 then, by (2), there is
p < 1 such that y(r) < e for p < r < 1 . Hence the last integral is less than
mp'+ 1 + e < 2e for large m which implies (10) .

Proposition 2. If IIPkjj<, ts bounded then f E 13 and

If IIPk 1I. -> 0 as k -- oo then f E 80 .

IIfi1,3 < 16supJIPk1I ..
k>0

Thus the Bloch norm is equivalent to the norm Suple IIPk 1I,, where the poly-
nomials Pk are defined by (7) . In the case of a lacunary series this norm is
essentially the same as sup Ibkl .

Proof. Let nk = 2k-1 . If k > 0 we can write

( 14 )

	

Pk(z) = znk+1
gk(z), deg (9k) < 3nk- - 1, II9kII . = IIPk1I. .

Hence it follows from Bernstein's inequality [13, vol . II, p . 11] that, for
Iz1<r<1,

(15)

	

Ip'k(z)I = I(nk + 1 )z nk gk(z) +
znk+l

gk(z)I :5

< [(nk + 1)rnk + (3nk - 1)rnk+11II9kIIoo <- 4nkrnk IIPk1I. .
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Therefore we deduce from (1) and (8) that

(16)

we conclude that

(17)

jjf jjs < 2 11poli. +

	

sup (1 -
o<r<1

Since (this is a standard estimate for gap series)

nkr'k nk

	

r' <2
00

Imr~`=

	

2r
(1 - r)2

(.k <m

	

m,=1

jIf IJr3 < 2IIpoli00 + 16sup Ilpkll00
k>1

4nkr n k JIpk1100 .

which inplies 813) . The final assertion of Proposition 2 is deduced in a similar
way from (14) .

Proposition 3. Let f E B . If sk = po +P1 +- - -+Pk and rk = 1- 2 -k then

lf(rkz) - sk(z)1 < 3011fll s for Iz1 < 1 .

Proof. We may assume that Ilf 11,3 < 1 . Then ¡Ipj Il,,. < 6 by Proposition 1 .
We see from (8) that, for Iz1 < 1,

f(rkz) - Sk(z) _ I:(Pj(rkz) - Pj(z)) +

	

pj(rkz) .
j=o

	

j=k+1

The first sum is bounded by

1 - rk) max Ipk(Q < 2-k Y'4 -2j-' - 6 < 24
ISI< 1

because of (15), and we see from (14) that the second sum is bounded by

00

6 1: rk'-1 < 6 1: exp(-2'-1-k) = 6 1:exp(-2") < 6 .
j=k+1 j=k+1

	

v=o

3. Proof of the main results
Proof of the theorem : Let f E C3 o . We obtain from Proposition 1 that there

is a decreasing sequence (Ek) such that

(18)

	

IIPkllo.<Ek for k=0,1, . . .



where Pk is given by (7) . We define

00

(19)
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f* = j:pk,

	

Pk = Ek 1pk
k=0

This coincides with the expansion (8) of f* .

Since IIPklloo < Ek by (18), we conclude from Proposition 2 that f* E 130 .
Writing sk = p* + pi +

	

+ p*, a partial summation gives

N

Ekpk = ENSN +
k=0

	

k=0

00

References

(k=0,1, . . .) .

(Ek - Ek+1)Sk .

Let now lf*(ro)) be bounded in 0 <_ r < 1 for some ( E T . Proposition 3 implies
that Jsk«)l is also bounded in k . Since sk(ro) is continuous in 0 < r < 1 for
each k . and since Ek - Ek+1 > 0, we easily deduce that

f(ro) = L:(Ek - Ek+1)sk(ro)
k=o

is uniformly continuous in 0 < r < 1 and therefore has a finite limit as r - 1 .
Proof of the Corollary: The function f = log g' belongs to Bo and therefore

has a finite radial limit on a set E C T with cap (E fl I) > 0 for every arc I of
T .

Let now ( E E. Then g' has a finite nonzero radial limit at ( and it follows
[8, p . 305] that

lim g(ro) - g«) qÉ 0

	

00
r-.1

	

(r - 1)(

exists . Since J is asymptotically conformal, we conclude from a theorem of
Warschawski [10, Satz II] or from [9, Corollary 3] that the unrestricted deriva-
tive exists .
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