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ON THE SMOOTHNESS OF LEVI-FOLIATIONS

Abstract

D.E . BARRETT AND J . E . FORNAESS

We study the regularity of the induced foliation of a Levi-flat hypersurface
in C'° , showing that the foliation is as many times continuously differen-
tiable as the hypersurface itself. The key step in the proof given here
is the construction of a certain family of approximate plurisubharmonic
defining functions for the hypersurface in question .

1 . Introduction

Let S be a real hypersurface in C' of class Ck(k >_ 2) with vanishing Levi-
form . The maximal complex subspace TSn JTS is an integrable distribution of
class Ck-1 and codimension one on S, so the Frobenius theorem [5] guarantees
that S admits a (unique) foliation of class C k-1 by complex hypersurfaces . The
goal of this paper is to establish the following result .

Theorem . The induced foliation of a Ck Levi-flat hypersurface is actually
of class Ck.

For k = 1 the Levi-form is not defined, but our proof will nevertheless
show that if a real C1 hypersurface admits a continuous foliation by complex
hypersurfaces then that foliation is of class C1 . In fact, the existence of the
Levi-foliation in the C1 case was proved by Shcherbina for n = 2[6] and by
Airepetian for general n [l] ; moreover, Airepetian's paper also establishes theC1 -smoothness of the foliation. It appears that his technique (which uses both
the Bishop disc method and the Frobenius theorem) could also be used to prove
our result .
Our proof is based on the construction of a family of approximate plurihar-

monic defining functions for S . (See the Proposition below) . The existence of
such functions is also useful in the study of holonomy of Levi-foliations (see
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1. Proof of Theorem

We work locally near some point in S, which we may take to be the origin,
and we choose coordinates z = (z', z~), z,l = x �, + iy � so that TOS = {(z', zn)
yn = 0} . Then we may write y� = r(z',xj on S, where r is of class Ck.
Let (t, z') by defined for (t, z') near (0, 0') by the condition that ID (t, z')=
= (z', O(t, z')) lies on the leaf Lt passing through (0', t+ir(0', t)) . Then 0 is of
class Ck-1 in (t, z') and holomorphic in z' . Our goal is to show that 0 is actually
of class Ck in (t, z') ; it is easy to see that all partial derivatives involving fewer
than k differentiations with respect to t exist and are continuous, so it will
suffice to establish the existente and continuity of (a1at)k0 .

The major step in proving the Theorem is the approximation of S along each
leafLt by the zero set of a pluriharmonic function, as specified in the following
Proposition .

Proposition.

	

There is a function h(t, z) defined in a neighborhood U of
(0, 0) such that the following conditions hold for (t, z) E U :

(i) h is continuous in (t, z) and holomorphic in z,
(ii) h(t, z) = 0 for z E Lt,
(iii) ah/az� 5b 0, and
(iv)

	

Im h = o(1hj') for z E S as z ---> Lt, uniformly in (t, z) .

Proof of Proposition:
We will construct a sequence of functions ho , h1 , . . . , h,k = h defined in a

neighborhood Uj of (0, 0) such that the following conditions hold for (t, z) E Uj :
(i)j hj is continuous in (t, z) and holomorphic in z,
(ii)j h;(t, z) = 0 for z E Lt,
(iii)i ahi/azn ~ 0, and
(iv)j

	

Im hj =o(¡ hili) for z E S as z �+ Lt , uniformly in (t, z) .
We may take ho (t, z) = z� - O(t, z').
Let T = (a1ax n )+(arIax n)(a1ayn ) ; T is a vector field of class C'-1 tangent

to S and transverse to the Levi-foliation near 0 . Let

01 (t, z') =

	

arg (Tho )(T(t, z'))

=

	

arg (1 + i(arlaxn)(XY(t, z')) .

Then 01 is continuous in (t, z'), and the function Im e-'01(t,z')ho(t, z) vanishes
along Lt as does its derivative with respect to the vector field T . Thus

Im e -'e 1 (t,z') ho( t z ) = o(1 ho(t, z) 1)

for z E S as z --> Lt , uniformly on a neighborhood of (0, 0) . We have 01 (0, 0') =
= 0 so that working on a smaller neighborhood we may assume that 10,1 <
< 7r/4 .



Claim. 01 (t, z') is pluriharmonic in z' .

Proof of Claim: It will simplify notation to suppress the parameter t tempo-
rarily. Also, it will be useful to perform the change of coordinates

In the (-coordinates S is defined by an equation of the form

To show that 01(x') is pluriharmonic it suffices to show that for every
complex-linear dise A near 0' in Cn-1 and for every f continuous on 0 and
holomorphic on 0 with Re f = 01 on áo we have Re f(fió) = 0100), where
(ó is the center of A.

Consider the two-parameter family of discs

We have
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(n = xn + 21f.= ho(z).

yn = «(,, xn) = tan 011b ,) - í. + o(I-í.I)-

rE,a(C , ) _

	

e{e'f(S') +iñ}), (, EA .

yn - r(~, , gin) = e{A + e- 1- f«') . cos

	

Re f(~,) ' ( tan

	

Re f
- tan 01(C'))} + o(I--I)

for ( =

	

(' E 0.
Suppose that 0100) > Re f«Ó ) . Pick a and b so that

and

0 < a < e- I- f(Só) . cos Re f«ó) - ( tan 01«ó) - tan Re f«ó))

b > 2 maXCEAe-
Then for sufficiently small e > 0 we have

1fn < r(S,,xr,) when

	

= Fe-,a(SÓ),
11 . > r(S

'
, xn) when

	

= rE,a(C,)~ ~, E C70, a < A < b,
lyn > r«

I
,xn) when

	

= FE,b«
i
),

	

E á.

But this violates the dise theorem [4, p. 53], since S is clearly pseudoconvex
from both sides.
The case 0 1 00) > Re f(CÓ) is similar.
Now choose f1 (t, z') continuous in (t, z') and holomorphic in z' with 01 =

= Re f1 . Let h1(t, z) = e=f1 (',z') ho(t, z) . Then h 1 satisfies (i)1 , (ii) 1 , (üi)1 ,
and (iv) 1 on a suitable neighborhood U1 of (0, 0) .
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Let us assume that hj_1 has been constructed and proceed . to construct hj .
Let

We have

and

_

	

(Ti Im hj _ 1 )(t, z)
C~(t' z)

	

J!((T Re h j_ 1 )(t, z))j

(Condition (iii) j_ 1 shows that the denominator doesn't vanish at (0, 0')) . Then
O; is continuous in (t, z') (recall that z- derivatives of h j_1 come for free), and
the function

Im h j_1 (t, z) - Oj(t, z') - ( Re hj_ 1 (t, z))j

vanishes along L t along with its derivatives of order <_ j with respect to the
vector field T . Hence

Im h j_1 (t, z) - Oj(t, z') - ( Re h j_ 1 (t, z))j = o(1hj_1(t, z)jj)

for z E S as z �+ L t , uniformly on a neighborhood of (0, 0) .

Claim. Oj(t, z') ás pluriharmonic in z' .

Proof of Claim : Again we suppress t temporarily and perform a change of
coordinates

(n = xn + ¡In = h7_1 (z)

Thus S is defined by an equation of the form

ñn = Oj«l) - -í -n' + o(jxnj')

As before, it suffices to show that for every complex-linear disc A near 0' in
Cn-1 and for every f continuous on 0 and holomorphic on A with Re f = Oj
on áo we have Re f((ó) = Oj((ó), where (ó is the center of 0 .

Again we consider a two-parameter family of discs

rE,a(() = ((', E + ¡Ej {A -1- f(( I M, (1 E 0.

yn-r((~,xn)=E~{~+ Re f((')-07(C~)Í+o(~E~')

for ( = FE,a((~), (' E 0.

Suppose that O; ((ó) > Re f«Ó ) . Pick a and b so that

0<a<Oi((ó)- Re f((ó)

b > 2maAx{Oj((')- Re f((')}C , E



Then for sufficiently small e > 0 we have

ún < r«', in ) when

	

= Ff,a«ó),
In > í""«', in ) when

	

= FE,a«'), (' E áo, a < A < b,
In > «(', -In) when ( = FE,b«% (' E 0 .

But this violates the disc theorem as before .
The case O1(Có) < Re f«ó) is again similar .
Again choose fi(t, z') continuous in (t, z') and holomorphic in z' with O; =

= Re fj. Let h;'(t, z) = hj_ 1 (t, z) - ifi(t, z')(hj-1(t, z))j . Then hj satisfies
(i)j, (ii) j , (iii)j, and (iv)j on a suitable neighborhood Uj of (0, 0) .
The proposition is proved, by induction .
Remarks .

1) In the case k = oo it need not be the case that S can be approximated
to infinite order along a given leaf by the zero set of a pluriharmonic function .
For n = 1, for example, a C°° curve need not be approximable to infinite order
at a given point by a real-analytic curve .

2) For j < k -2 the claims in the above proof can be proved by a straight-
forward Levi-form computation .

3) One can avoid explicit mention of pseudoconvexity in the above proof
by observing that the winding number of the boundary of a holomorphic disc
around a given leaf cannot jump under small perturbations .

4) The functions hj can actually be chosen to be of class Ck- j in (t, z) .
5) If h(z) is a holomorphic function vanishing on Lo with Im h(z) _

= o(1 h(z)I k ) on some neighborhood of 0 in S then

h(z) _
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h(z) = P(h(0, z)) + fl(z) - (h(0, z))
k+1

where P is a polynomial of degree k with real coeficients and ,Q is holomorphic .
Indeed, we may write

where fl and the aj are holomorphic . Thus

aj(z') - (h(0, z))j + P(z) - (h(0, z))k+l

k

E( Im aj(z'))( Re h(0, z))j =

	

Im h(z) -f- o(1h(0, z)I k = o(1 Re h(0, z)jk)
j=o

on S, forcing Im aj - 0 for 0 _< j < k, so that each aj is a real constant .
6) If S is a real hypersurface of class Ck which is pseudoconvex from one

side and which contains a complex hypersurface then the functions hj can be



176

	

D .E . BARRETT AND J .E . FORNAESS

constructed for j < some even integer jo ; the corresponding function O;,, will
be sub-or superharmonic . (The pluriharmonicity of 01 has been used in several
papers, for example in [3, p . 290] .)

To prove the Theorem we first note that Re h has constant sign on each
leaf so that by Harnack's inequality we have

for to , t, z' close enough to zero . But (iv) implies that Re h and h are comparable
so it follows that

and so

Re h(to , xP(t, z')) = 0(1 Re h(to , xP(t, 0'))I)

h(to, T(t, z')) = 0(Ih(to, T(t, 0'»j)

Im h(to , ID (t, z')) = o(I h(to, T(t, 0'))I k ) .

Thus from bounds for pluriharmonic conjugates we have

h(to, T(t, z')) - h(to , T(t, 0')) = o(I h(to, p(t, 0'))I k) = o(It - to
¡k)

after shrinking the domain of z' .
By (iii) and the inverse function theorem we may write

z,l = -P(t, z', h(t, z)),

where ~¿ is continuous in (t, w) and holomorphic in w. Thus

«t, z') = d>(to, z', h(to, kP(t, z'))) = -¿(to, z', h(to, T(t, z'))) + O(It - to I
k
).

Now the main term of this last expression is C k with respect to t, so that the
following Lemma will establish the existence and continuity of (alat)k0(t, z')
by showing that

(a1at)kO(t, z' ) = (alCgt)k~¿(t o , z' , h(to, 0(t, 0'))) Ito=t-

Lemma. Le¡ f be a Ck-1 function on an interval I C R . Suppose that
there is a function g on I x I such that

(i)

	

g(s, t) exists and is continuous on I x I for 0 < j < k, and
(ii) f(t) = g ( 3, t) + o(It - S i k) uniformly on I x I.

Then
f(k, (t) = (alat) kg(t,S) I9=t .

Proof of Lemma: It is clear from the hypotheses that

f(j)( t ) = (a1at)'g(s,t)19=t

for 0 _< j < k - 1 . Let P(s, t) denote the (k - 1)` Taylor polynomial for f at
s, and let

a(t) = (alat)kg(s,t)19=t .
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Then applying Taylor's theorem to g in (ii) we have
(*)

	

f(t) = P(s, t) + a(t)(t - s)k/kl + o(1t - sjk)
uniformly on compact subsets of I x I . Let Vh denote the difference operator

V h<P(t) = {W(t + h) - 4p(t)}/h .
Applying (Vh)k - 1 to both sides of (*) and taking s = t we get

(Vh)k - I f(t) = f(k-1)(t) + cka(t)h + o(h),
uniformly on compact subsets of I, where

ck = h-1 (Vh)k-1 (t - s)k js-t = (k - 1)(kl)/2 .
Thus

(1)

	

f(k) (t) = liÓ
Vhf(k-1) (t)

= lim(Vh)kf(t)
- ck{a(t + h) - a(t)} + o

= hlm(Vh)kf(t)

= him a(t) + o(1)

	

(by (*) again)

= a(t) .

This completes the proof of the Theorem .
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