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ON THE SMOOTHNESS OF LEVI-FOLIATIONS

D.E. BARRETT AND J.E. FPORNAESS

Abstract

We study the regularity of the induced foliation of a Levi-flat hypersurface
in C=, showing that the foliation is as many times continuously differen-
tiable as the hypersurface itself. The key step in the proof given here
is the construction of a certain family of approximate plurisubharmonic
defining functions for the hypersurface in question.

1. Introduction

Let 5 be a real hypersusface in C” of class C*(k > 2) with vanishing Levi-
form. The maximal comnplex subspace TSNJT'S is an integrable distribution of
class C¥~! and codimension one on S, so the Frobenius theorem (5] guarantees
that S admits a (unique) foliation of class C*~! by complex hypersurfaces. The
goal of this paper is to establish the following result.

Theorem. The induced foliation of a C* Levi-flat hypersurface is actually
of elass C*.

For £ = 1 the Levi-form is not defined, but our proof will nevertheless
show that if a real C! hypersurface admits a continuous foliation by complex
hypersurfaces then that foliation is of class C!. In fact, the existence of the
Levi-foliation in the C? case was proved by Shcherbina for n = 2[6] and by
Airepetian for general n [1}; moreover, Airepetian’s paper also establishes the
C'—smoothness of the foliation. It appears that his technique (whick uses both
the Bishop disc method and the Frobenius theorem) could also be used to prove
our result,

Our proof is based on the construction of a family of approximate plurihar-
monic defining functions for . (See the Proposition below). The existence of
such functions is also useful in the study of holonomy of Levi~foliations {see
(21).
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1. Proof of Theorem

We work locally near some point in S, which we may take to be the origin,
and we choose coordinates z = (2', 2 ), 2n = Tn + iy 50 that 758 = {(z/,2,) :
y» = 0}. Then we may write y, = r(2’,2,) on 5§, where r 15 of class c*
Let (¢, 2') by defined for (t,2') near (0,0') by the condition that ¥(t,2')=
= (2',9(t, 2'}) lies on the leaf L, passing through (0', ¢+ ér(0",£)). Then ¢ is of
class C*~! in (¢, z") and holomorphic in z'. Our goal is to show that ¢ is actually
of class C* in (¢, z'); it is easy to see that all partial derivatives involving fewer
than k differentiations with respect to { exist and are continuous, se it will
suffice to establish the existence and continuity of (8/9¢)*y.

The major step in proving the Theorem is the approximation of S along cach
leaf L; by the zero set of a pluriharmonic function, as specified in the following
Proposition.

Proposition. There is o funciion h(t,z) defined in a neighborhood U of
(0, 0) such that the following conditions kold for (t,z) € U:
(i) h is continuous in {t,z} and holomorphic in z,
(1) h{t,z) =0 for z € Ly,
(1i2) Bh/0z, #0, and
(iv) Im bk = o{|h|*) for z € § as z — Ly, untformly in (8, 2).

Proof of Proposition:

We will construct a sequence of functions hg, hy,...,hr = h defined in a
neighborhood U; of (0,0} such that the following conditions hold for {¢, z} € Uy
(7); h; is continuous in (1, z) and holomorphic in z,
(ti); hy{t,2) =0for z € Ly,
{(iiz}; Oh; [0z, # 0, and
(1v); Im k; = of|h;|?) for z € S as z — L, uniformly in {t,2).
We may take hg(t,z) = z,, — (¢, 2').
Let T = {8/0z,) +{(0r /82, Y(8/8yn); T is & vector field of class C*! tangent,
to § and transverse to the Levi-foliation near 0. Let

©1(t,2) = arg (Tho)(¥(t,2"))
= arg (1 + i{8r/8z ) (T(¢, 2')).

Then 6, is continuous in (£, z'}, and the function Im e_"e‘-("z’)hg(t, 2z) vanishes
along L; as does its derivative with respect to the vector field T Thus

Im e™ 018 hy(t, 2) = of [ho(t, 2)])
for z € §as z — L,, uniformly on a neighborhood of (0, 0). We have ©,(0,0') =

= 0 so that working on a smaller neighborhood we may assume that |©,] <
<wjf4. B
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Claim. ©4(t, 2"} is plurtharmonic in 2'.

Proof of Claim: Tt will simplify notation to suppress the parameter ¢ tempo-
rarily. Also, it will be useful to perform the change of coordinates
(l = z.r

Cn = En + 3':1:!,1 = ho(z).
In the (—coordinates S is defined by an equation of the form
G = (', 8a) = tan 61({") - £n + o|Zxl).

To show that ©,(¢') is pluriharmonic it suffices to show that for every
complex-linear disc A near { in C*~! and for every f continuous on A and
holomorphic on A with Re f = ©; on 8A we have Re f(¢}) = ©:{¢}), where
{5 1s the center of A.

Consider the two-parameter family of discs
Tea(¢') = (¢ e{e0 14, (e A
We have
Gn — #({ En) = e{d +e7 ™ FCY . cos Re F(¢')-(tan Re f({')—
~ tan ©,(("))} + ofle])
for C = Fe,A(CI)v C € A.
Suppose that ©;(¢;) > Re f(¢}}. Pick a and b so that

0<a<e ™). cos Re f(¢5)-( tan ©1(¢;) ~ tan Re £(G3))

and
b>2maxpeae” ™ A

Then for sufficiently small € > 0 we have

§n < 7(¢',3,) when { =T {{),
Jn > F({',8n) when ( =T A(¢), (' € BA, a < A<},
Gn > F{{',&n) when { = T'c3({"), ' € A.

But this violates the disc theorem [4, p. 53}, since S is clearly pseudoconvex
from both sides.

The case ©1{(;) > Re f{{})} is similar. W
Now choose f1{¢,2') continuous in {#,2’) and holomorphic in z' with ©; =

= Re fi. Let hy(t,z) = ei()h(t, 2). Then h, satisBes (5)1, i)y, (i1,
and {tv); on a suitable neighborhood U; of {0,0).
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Let us assume that h;_; has been constructed and proceed to construct ;.

Let .
(T7 Im h;_1)(t, 2)

T R hyoE.2)) =)
(Condition {7i1};..1 shows that the denominator doesn’t vanish at {0,0')). Then

©; is continuous in (¢, z') (recall that z— derivatives of h;_; come for free}, and
the function

0;(t, ) =

Im hj—1{t,2) — ©;(¢,2') - { Re h;_1{2, z)Y

vanishes along I, along with its derivatives of order < j with respect to the .
vector fleld T'. Hence

I hyoa(t,2) — O5(t,2") - Re hjoa(t, ) = oflh; a8, 2)1)
for z € § as z — L, uniformly on a neighborhood of (0,0).
Claim. 0,{,2') is pluriharmonic in z'.

Proof of Claim: Again we suppress f temporarily and perform a change of
coordinates

C.F — z.‘
(n = :En + 3y~n = hj—l(z)
Thus 5 is defined by an equation of the form
o = ©;(¢") - &, + o{E 1)

As before, it suffices to show that for every complex-linear disc A near 0’ in
C™~! and for every f continuous on A and holomorphic on A with Re f = 0,
on 8A we have Re f({) = 9,{{{), where {{ is the center of A.

Again we consider a two-parameter family of discs
Tea(¢) = (e + i {A+ F(CNY), ¢ € A
We have
fiu — F((,8a) = & {2 + Re F({') = ©;(¢")} +o(lel)

for { =T a(("), { € A.
Suppose that ©;(¢5) > Re f{{p). Pick a and b so that

0 < a<0;(¢)— Re f(¢)

and

b> 2max{G;{{") — Re f({")}
¢ EA
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Then for sufficiently small ¢ > 0 we have

gn < 7({',Z,) when { = T. . {¢),
Ga > F(C',a) when € = T, p(¢), ¢ € D, a < A< b
§n > 7(¢',3,) when { =T 4{(), ¢’ € A.

But this violates the disc theorem as before.
The case ©,(¢;) < Re f(¢{) 1s again similar. B

Again choose f;(t,2") continuous in (t,7’} and holomorphic in 2’ with ©; =
= Re f;. Let 2;{t,2}) = hj_s(t, 2} — ifj(4,2')(h;_1(,2)). Then h; satisfies
(2);, (12};, (#28);, and (iv); on a suitable neighborhood U; of {0, 0).

The proposition is proved, by induction. ™

Remarks.

1) In the case k = oo it need not be the case that § can be approximated
to infinite order along a given leaf by the zero set of a pluriharmonic function.
For n = 1, for example, 2 C* curve need not be approximable to infinite order
at a given point by a real-analytic curve,

2) For j < k—2 the claims in the above proof can be proved by a straight-
forward Levi-form computation.

3} One can avoid explicit mention of pseudoconvexity in the above proof
by observing that the winding number of the boundary of a holomorphic disc
around a given leaf cannot jump under small perturbations.

4) The functions &; can actually be chosen to be of class C*~/ in {t,2).

5) If R(z) is a holomorphlc function vanishing on Ly with Im h{z) =
= of |h{z)|* ) on some neighborhood of 0 in § then

h(z) = P(h(0,2)) + B(2) - (h(0, 2))**?,

where P is a polynomial of degree k with real coefficients and # is holomorphic.
Indeed, we may write

k
2) = 3 ay(2) - (h(0,2)) + B(2) - (A(D, 2™,

j=0

where § and the a; are holomorphic. Thus

> _(Im a;(z))( Re h(0,2)y = Im h(z) + o{|h(0, 2)|* = of| Re A(0, 2)[*)

j=6

on §, forcing Im a; = 0 for 0 < j <k, so that each «;j is a real constant.
€) If § is a real hypersurface of class C* which is pseudoconvex from ome
side and which contains a complex hypersurface then the functions i can be
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constructed for j < some even integer jo; the corresponding function @, will
be sub—or superharmonic. {The pluriharmonicity of ©, has been used in several
papers, for example in [3, p. 290].}

To prove the Theorem we first note that Re h has constant sign on each
leaf so that by Harnack’s inequality we have

Re A(to, ¥(t,2)) = 0{] Re R{to, ¥(t,07))

for to, ¢, 2’ close enough to zero. But (iv) implies that Re h and h are comparable
so it follows that

h{te, (1, 2")) = O{{R(to, ¥{t,0))])

and so

Im A{te, ¥(t,2')) = o{|R(to, T(, 0'}}*).
Thus from bounds for pluriharmonic conjugates we have
h(tﬁr KI}(i} z!)) - h(t()! \1}(-:,0")) = O(lh(fg, q}(tvoi)ﬂk) = O(lt - tﬂlk)

after shrinking the domain of 2’
By (iii} and the inverse function theorem we may write

zp = ®(t, 2, R(1E, 2)),
where ® is continuous in {f,w) and holomorphic in w. Thus
W(t,2') = Blto, 2", hlts, U(t,2'))) = B(to, 2, hlto, U(t, 2'))) + o[t — #o|*).

Now the main term of this last expression 15 C¥ with respect to #, so that the
following Lemma. will establish the existence and continuity of (8/8t)*w(t,2")
by showing that

(8/86) (1, 2"y = (8]0 B(te, 2, Alte, ¥(£,0'N)) lp=1-

Lemma. Let f be & CF ! funetion on an interval I C R. Suppose tha!
there is a function g on I x I such that
(i) {8]8tY g(s,1) exisis and is continvous on [ X I for 0 < j <k, and
(1) f(t) = g(5,1) + o{|t — s|*) wniformly on I x I.
Then _
FP) = (8/0) gty s} la=e.

Proof of Lemma: Tt is clear from the hypotheses that
FOUEY = (8/8tY g(s,1) |s=

for 0 €< 7 < k — 1. Let P(s,t) denote the (£ — 1)°* Taylor polynomial for f at
s, angd let

O{(t) - (8/62)“5‘{8,1) |s=t‘
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Then applying Taylor’s theorem to g in {ii} we have
(*) F(8) = Ps, 1) + a(t)(t — s [kl + of |t — sfF)
uniformly on compact subsets of I x [. Let ¥V denote the difference operator
Vag(t) = {olt + h) - o()}/h.
Applying {V )}k — 1 to both sides of (*) and taking s = ¢ we get
(Vo) f(8) = £ + cxalt)h +o(k),

uniformly on compact subsets of J, where

ek = AUV Tt = ) |o=e = (B — 1){R1}/2.

Thus

(1) FO) = lim v, f50 ()
= lm(Va) f(t) - ee{alt + ) — o)} +0
= lim(V,)* £(1)
=lima(t)+0(1) (b (*) again)
=aft). |

This completes the proof of the Theorem.
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