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SOME RESULTS ON THE REAL K-THEORY
OF CERTAIN HOMOGENEQUS SPACES

M.O. AJETUNMOBI

. Abstract

Let Fi(n) be the incomplete complex flag manifold of length r in .
We make a start on the complete determination of the torsion part of the
group KO {F,.(n}) giving results here when r = 2, 3.

Introduction and Statement of results, Let KO(X) be the Grothen-
dieck ring of real vector bundles over a space X, and KO~*, the associated
cohomology theory. Let Fy(n) be the incomplete complex flag manifold of
length  in C™ which can be identified with

Ur)
ULy xU{n—~r)

where U(1)" = U(1) x U(1) x --- x U(1) (r factors).

The question raised is “how many copies of Z; are present in KO F.(n))".
A similar question was asked by Hoggar in [3] for the complex Grassmannian.
The free part of KO™*(F,(n)) is completely known from [3]. In this paper, we
make a start on the determination of the torsion part of KO~#(F}(n)) giving
results here when r = 2,3. The case r = | is done in [2].

Proposition A. The rank of KO *(F,(n)) is TJ‘_’-}—)—!, :=0,1,2,3,

Theorem A. The KO —groups of the complez flag manifold of length two,
Ey(n) are as follows:

i n=0,1,3{med4) n =2 (mod4)
0 (¢)1 (g DI,

1 Z, Z,

2 9oL, ()L DI,

3 I, 0

4 (9}, ()L

5 0 0

6 (g}Z (9)Z

7 0 1.
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where g = w and (g) means the free abelian group of rank g.

Theorem B. The KO~ -groups of Fy{n) are as follows:

z n odd n = 0 {mod 4) n = 2 (mod &)
0 {(&H (474 (OHI®I,

1 Z, 1 ;9 Z,

2 (HIel (HLa1, (OI1a1,0L,
3 Z, I, d 2, Z,

4 OIel, Hlol,el Lo,

5 0 I 0

6 (01 (OH1al, QY

7 4] 0 Z;

where £ = i’l_:lzﬂ“_—zl
1. Proof of Proposition A. We observe that since the rational KO
Atiyah—Hirzebruch spectral sequence [1] for F.(n) collapses, we have
!
rank KO°(F(n)) + rank KO™YF.(n)) = rank H*(Fy(n)) = ﬁ
and the result foliows from the fact (see [3]) that rank KO%(F.(n)) = rank
KO™(F(n)),i=0,1 ®

2. Proof of Theorem A. First we give generators of H*(Fy(n); KO ({* 1)),
where {*} denotes a point space.

There are two canonical complex line bundles hy, Az over Fa(n).

Put z; = ei{h; )}, 11 = c3{h2), where ¢; is the first Chern class. Let z,y be the
mod 2 reductions of z,,y; respectively, and H*(Fy(n); KO*(*)) 1s generated
as a K O*(*) algebra by either z,y or by z1,¥:1. In fact, an additive basis for

H*{Fy(n); KO*(*))isz'y or 2iyl (0 < i <n—1;0£j € n—2)end the ring
 structure is given by H*(Fy(n); Z] = Z[x1,y:1] subject to

6—n—l(xlsyl) =0 = &n{zl': yl)

and similar result holds for H*{Fy(n); Z,} where &, is the i** complete symme-
tric function in z; and yy, that is, the sum of all monomials of degree ¢ 1 z,
and gy, and it is to be interpreted as 1 when ¢ = 0 and as zero when : < 0.

Kerd)? In the K O-theory Atiyah-Hirzebruch spectral sequence (1], we con-
sider the differential

P.g dglq pt+2.9—T1
Byt L EITOYT

Then using lemma (2.4} in (3],

dh? =0 for g = -2, —4(. mod 4).
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d8 % = S¢?py and d2 %1 = G42. For properties of Sg? see [4]).
Now, using the Cartan formula,

s 2(Ir 3)_ {G: 5,7 even
9 = Tyl 4TS r s odd

forr 4+ s =0,2 (mod 4). Also, for r + 5 = 1,3 (mod 4)
r‘-{-l K

L ¥
ng(wy}={ r e+l

="y : sodd, 7 even.

: rodd, s even

Hence, for n even and in dimensions < 2(n — 2) {writing down the number of
copies of the coeficient group, and 3; represents the i** Betti number}

Ker dgk’q = [—-——-1 +2ﬁ8k] , Im dgk’q = [%]

Ker dﬁk q [ﬁsk] dSk-I—'Z,q [1 + ‘Bsk-i-‘l}

We obtain the same values for n odd except

n— n— 1 — _ -3
Ke'rdg( e [—_ﬁ2(2 13] +1= n-;- ) Imdi(”” R [__ﬁz(; 1)] 1= 5

_ — - ne— 1
Ker di(“ 2 - [}3___2(; Z)] —1, Im di(”” D [_52(2 ”jl +1= n;— .

For dimensions > 2(n — 1)

i Coen
Ker dgk,q - @ , Im dgk,q — .BSL+‘2 +1
2 2
Ker d8*+29 _ [ﬁak-n] +1, Im @29 = [ﬁ8k+4]
2 2
n odd

Ker &85 = [%J +1, Im &5 = [?68;1—2]

efd8k+2,q [ﬁekw] d3k+2,g [5s;+4]+1

for g =0, —1 {mod 8).
Remark. Similar results hold for

- Bk - B
Ker d, 49 and Ker dgHﬁ 7,
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Torsion Part:
Now consider the sequence of differentials

1) EP-2et1 _, ppa _, pptiect
For ¢ = —1 (mod 8), (1) becomes
Er-nm8 _, ppoStcl | praebie2
For p =0 (mod 8}, we get
B =0,k #£0and B3V = T,
Similarly for p = 2 (mod 8),
Egk“’"m_l =Dfor 8k +2+#2(n—1), n =2 (mod 4)

Eg(n—l),wal—l . Zz(n =9 (mod 4))

Also, for p = 4 (mod 8)
Egk—H,—St—l — 0.

Finally for p = 6 (mod 8), E3* %71 = ( for 8k+6 # 2(n—1) (n even) or 8k +
6 # 4n—6 (n odd), EX" 77! = 7, (n = 0 (mod 4)), and By OTH T = 7,
{n odd).

For ¢ = —2 (mod 8), from {1} we get

p,—81-2
E2

—8t—-2
E‘Ps —
3 p—2,—8t-1"
Im d}

Now we show that F3 = Ey for ¢ = —1 (mod 8).

From the differential E3:~1 & Er=r, E~7 = except r = 0,2,4 (mod 8)
- and d, =0 for r = 0,4 (mod 8) because it maps a finite group to a free group.
Thus, we are left with the case r = 2 (mod 8). Eg‘_l 1s generated by unity, 1,
and we claim that d,(1} = 0 for r = 2 {mod 8).

Proof of Claim: It suffices to show that dyo{1) = 0. The differential d, is
a derivation which implies (by induction} that dio{z*) = sz* 'dis(z) and the
claim follows. Hence E;’ o E%~!. By considering the filtration of KO,
we have KO~ = Z, for all n.

For n even, we consider the sequence of differentials

= dr _1y.—1 ", — —
E‘i:(n 1)=rr—2 __}Ef(n 1),—-1 A EE(H 134, r

pHr=D-mr=2 g except for r = 0,2,6 (mod 8), 'd, = 0 for r = 0,6 {mod 8)
(see [3]) and 'd, = 0 for r = 2 {mod 8} because EX" D770 i a free group and
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it survives to Eoo. Thus ‘d, =0 for all r > 3. Also EZ"™DF"77 — g except for
r =0,2,4 (mod 8} in which case "d, = 0 for r = 0,4 {mod 8) because it maps
a finite group to a free group. Thus we are left with the differential

2(n—1),-1 “dakt2 L2nr8k -2
Eak+2 - E8k+2
We claim that "dgpy, =0, B

Proof of Claim: It is clear that EX®™1"1 = 7, is generated by 2”71, We

recall that z and y are independent and any cohomology operation #{(z") is a
function of x only while 8(y°} is a function of y only for positive integers r, s,
and

”dgk.l.g(xn_l) = (n - l)xn_zdgk.!.g(&“) = xn_zdgk.i.?(x).

Since dyi42{x) is a function of z only and z"2dgyyo(z)e H2 ¥ (Fy(n); Zo)
and using the constraint z® = 0 we have dgy42 = 0 finishing the proof of

claim. Hence Eg(“_l)’_l survives to E.,. Thus by considering the filtration of

KO* 7%, we have KO % = Z,, n even (mod 4} ie.

KO™ n=0(mod 4)

K02n—3 .
KO~ n =2 (mod 4).

For n odd, we consider the differentia} E3#~6-77-2 kg E#=6=1 and by simi-
lar reasoning, By © 71 = EAr-6-1 By considering the filtration of KO**~7,
we have KO"~7 = KO3 = Z,.

The free parts follow from proposition (A). These and the torsion part com-
plete the proof of Theorem (A).

3. Conclusion. The proof of theorem (B) is exactly similar to that in 2 but
the procedure for determining the kernels and the images of the differentials is
fairly elaborate.

Remark: By using the double structure of Fi.(n)} as the total space of a
bundle over the Grassmannian and as the total space of a projective bundle over
F,_1(n}, we can apply the K O-spectral sequence of a fibration to the spherical
fibration 7 : Fy(n) — G{C™} with fibre $2, the 2-sphere and the projective
fibration o : Fy(n) — P"7}(C) with fibre P"~? (C) to obtain KO~ {Fy(n)).

In particular, for n odd, theorem A agrees with the results of Karoubi in [5].

References

1. M.R. ATIYAH, F. HIRZEBRUCH, Vector bundles and homogeneous
spaces, Proc. of Symposia in Pure Math., Differential Geometry 3 (1961),
T-36, Amer. Math, Soc.



164 M.QO. AJETUNMOEI

2. M. Fuil, KO-groups of projective spaces, Osake Jour. Math. 4 (1867),
141-149.

3. S.G. HOGGAR, On KO-theory of Grassmannian, Quart. Jour. Math.,
Ogford Ser. (2) 20 (1969), 477-463.

4. D. HUSEMOLLER, Fibre bundles, Springer-Verlag (1975), New York. Hei-
delberg Berlin — Second edition.

5. M. KAROQUBI, V. MUDRINSKI, Real K-theory of Complex Projective Bun-
dles, Acad. Se. Paris 297 Series 1 (1983), 349-352.

Faculty of Science

Lagos State University
Qjo, Badegry expressway
Lagos, NIGERIA.

Rebut el 10 de Novembre de 1687





