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ON QUOTIENTS OF HOLOMORPHIC FUNCTIONS
IN THE DISC WITH BOUNDARY
REGULARITY CONDITIONS

Abstract

.TOAQUIN M . ORTEGA

In this paper we give characterizations of those holomorphic functions in
the unit disc in the complex plane that can be written as a quotient of
functions in A(D), A°°(D) or Al(D) with a nonvanishing denominator in
D. As a consequence we prove that if f E Al (D) does not vanish in D,
then there exists g E Al (D) which has the same zero set as f in D and
such that fg E A(D).

1 . Introduction and statement of results

Let D denote the unit disc in the complex plane and T its bo_undary . We
denote by A(D) the Banach algebra of all continuous functions on D, holomor-
phic in D, and by A'(D) the Frechet algebra of all holomorphic functions in
D such that all its derivatives extend continuously to D . We will also con-
sider the Banach algebra A1(D) consisting of all holomorphic functions in D
satisfying a Lipschitz conditions of order one .

In this paper we are interested in the characterization of those holomorphic
functions in D that can be written as a quotient of functions in A(D), A°°(D)
or A l (D), respectively, with a nonvanishing denominator in D .
The corresponding real-variable problems are very simple . For example,

every continuous (resp.C') function in an open set V of R" is a quotient of
two continuous (resp.C°°) functions in R" vanishing exactly on R" \ V (see
[6]) . On the other hand, this kind of problems has also been treated in complex
analysis, the most well known one being the result of F . and R. Nevanlinna
which characterizes the quotients of bounded holomorphic functions in D as
the functions in the class N, i . e .

2n
sup

	

log+ j(re'%dt < oo .
r lo
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(see also [111 for another problem of this type) .
Before stating our main results we will recall some well-known notions and

introduce some notations . Each function f in N has an unique factorization
f = BSF, where B is the Blaschke product with the same zero sequence as
f, F is the outer function with boundary absolute value 1 F1 = 1 f1 and S is a
singular function

S(Z) = exp {-
¡ z* eit + z

	

l

for some signed measure p. The descomposition of dw in its positive and nega-
tive parts gives S = S1IS2, with 51, S2 singular inner functions . The Smirnov
class N+ is the subclass of N defined by the condition S2 = 1 . We will use the
fact that f E N+ if and only if the family log+ If,. 1, where f,. (e' a ) = f (re' B ),
has uniformly absolutely continuous integrals . ;. From this it easily follows that
N+ is a linear space (see [3, chapter 2]) as a general reference on N and N+).

If f E N is as above we will write

sing (f) = E U supp h,

where E is the set of accumulation points of the zeros of f and supp Et is the
closed support of tt . Then B and S extend analytically to
T \ sing (f) and are not zero there (see [4, p.63]) .
Now we state our first result :

Theorem 1. An holomorphic,function f in D is the quotient of two func-
tions f,, f2 E A(D), f2 :~ 0 in D if and only if the following two conditions
hold:

(a) f EN.

(b) There is a closed set M of Lebesque measure zero such that :
(b.1) f extends continuously to T \M.

(b.2) sing (S2 ) C M, where f = BFS1IS2 is the factorization of f .

In this case, f2 can be chosen to vanish exactly on M and outer if and only
iff E N+ .

To state our other main theorems we need the notion of Carleson set . These
are the closed sets M C T such that

logd(e' B ,M)

	

dB > -oo
T

where d(e' B ,M) denotes the distance from e' B to M (and so, obviously, sub-
sets and finite unions of Carleson sets are Carleson sets, too) . These sets are
precisely the zero boundary sets of functions in A°° (D) and Al (D) (see [8]) .
Finally, we say that f E A°° (D) is flat at a closed set E C T if f(n) (z) = 0 for
allnandzEE.
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Theorem 2 . For an holomorphic function f in D to be the quotient of two
functions fl, f2 E A°° (D), f2 ,~ 0 in D it is necessary and sufficient that:

(a) f(") E N for all n, and if f = BFSI 1S2 is its factorization then
(S2

f)(n) E N+ for all n .
(b) There is a Carleson set M such that:

(b.1) There are a function g, satisfying a Lipschitz condition of order 1
in T, with logg E Ll (T), positive outside M, and for each n an integer qn such
that

1f(n ) ( z)11Iqn =0(g(z)-1),zET\M.

(b.2) sing (S 2 ) C M.
In this case, f2 can be chosen fíat exactly on M and outer if and only if

f E N+ .

Theorem 3. An holomorphic function f in D is the quotient of two func-
tions fl , f2 E Al (D), f2 :~ 0 in D if and only if the conditions (a) and (b) of
Theorem 2 hold for n = 0 and n = 1. In this case, f2 can always be chosen in
A°° (D) and flat exactly on M and outer if and only f E N+ .

In condition (b) of Theorem 2 and 3, f(n) is to be understood as the almost
everywhere defined boundary value of the function f(n) E N. It is not difficult
to see direct1y that conditions (a) and (b) imply in fact that f(n) has a con-
tinuous éxtension to T \ M (for all n in Theorem 2 and n = 0 in Theorem 3) .
We point out however that, contrary to what one might expect in analogy with
Theorem 1, condition (b.1) cannot be replaced by the weaker assumption that
f(n) extends continuously to T \ M for all n (see Remark 2 in section 3) .
Acknowledgement . I wish to thank J . Bruna for several remarks and helpful

conversations about this work .

2 . Proof of Theorem 1

Lemma 1 . Assume f E N and that there is a closed set M such that f
extends continuously to T \ M . Let K = {z E T \ M : f (z) = 0} . Then
sing (f) CM UK and the outer part F of f also extends continuously to T \M.

Proof. This is well known when M =

	

(see [4,p.69]) and the same proof
applies in this general case .

Lemma 2. Let cp be a non-negative continuous function in (a, b) such that
log cp is integrable . Then there exists a C°° function zp in
(a, b) such that i+/> > 1, ip > cp and

J b
log ip(t)dt <_ 4

J 6
log+ cp(t)dt .

a

	

a
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Proof.. We consider a partition of (a, b) in intervals

b-a b-a b-a b-a[a-+-2n+1,a+

	

2- ) , [b

	

2n

	

,b

	

2n+1 )e

d

	

d

log+ 9 < S, f, S < 2

	

log+ P.
c

	

c

b

	

6

log+ <p < g,

	

g < 2l

	

log+ <p .
a

	

a

Then ifi = eh satisfies all required conditions .

f - BSFlG
F2 G

Let [c, d) be one of these intervals . Let s be a step function in [c, d) such that

Doing the same in every interval we obtain a subdivision of (a, b) in intervals
[An, An+1) and a function g , equal to some constant cn on [An , An+1) such that

We can also assume that cn > 0 and c� 7~ c,+1 . Let [An , A.+1) and [A. + 1 , An+2)
be two contiguous intervals and let Un and /fin+i their respective middle points .
It is easy now to construct a function h on [pn,pn+1] which verifies :

1) h(x) > cn for x E [Pn, An+1] and h(x) > cn+1 for x E [an+ 1, un+1[ .
2) h(j¿;) = 2c ;

	

, z = n, n -f- 1 .
3) h is C°o and all its derivatives vanish at p,n and Pn+1
4) f,n+1 h < 2 fron+1 g .

~n

	

un
Doing the same with all intervals we obtain a; C°° function in (a, b), which

we continue denoting by h, such that h > g and

Proof of Theorem 1 : The necessity of the conditions is clear in all the cases,
using Lemma 1 for part (b.2) . Assume now first that f E N+ and extends
continuously to T \ M. Let f = BSF. Applying Lemma 2 to <p = I f I in
each complementary interval of T \ M we obtain a C°o function <p, in T \ M,
<pl > 1, <p l > <p with log go l E Ll (T) .

	

Now we consider the outer functions
F1 ,F2 with boundary values IF,J = yol pl, IF21 = 11;ol, respectively, so that
¡Fl (z) 1, FF2 (z) 1 <_ 1 and Fl = FF2 . The function F2 extends continuously to
T \ M because log <p l is C°° off M by Lemma 1 and hence Fl = FF2 also
extends continuously to T \ M. Let now G be an outer function in A(D)
vanishing exactly on M. Then F1 G, F2 G are outer functions in A(D), F2 G = 0
exactly on M and Fl G = 0 on M U K where K is as in Lemma 1. Now
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Since by Lemma 1, sing (BS) C M U 'K and F, C vanishes there, it follows
that fi = BSFiG E A(D) . This proves the theorem when F E N -'- . If f is
just in N and f = BFS, IS2 with sing (S2) C M repeating the proof we end
up with

f
BS,F,G
S2F2G

and also S2 F2G E A(D) because sing (S2 ) C M and F2G vanishes on M.

3 . Proof of Theorem 2

In order to prove Theorems 2 and 3 we will follow the method used by B.A .
Taylor and D .L . Williams in [11] to obtain such a representation for certain
Blaschke products . As in [11], we say that a function defined in
(a, b) satisfies a weak Lipschitz condition if

~P(t + ot) - ~o(t)I <- 21Atll;p(t)12

for IOti < 1/21cp(t)1 - i . We will use the following three Lmmas (see [111 for
Lemmas 3 and 4 and [10] for Lemma 5) :

Lemma 3. Let co be a real-valued in (a, b) which satisfies a weak Lipschitz
condition, cp > 2, and

Ip(t)1 ? (min(It-al,¡t-bl))-i .

Then there exists a real-valued C°° function h in (a, b) such that h _> 2,
cp - 2 < h < cp + 2 and ¡h(n) I < cn<p3n for some constant C� and all n .

Lemma 4. Let g be a non-negative integrable function on [-7r,7r] . There
exists a non-negative C°° function w(x), defined for x _> 0, which verifies :

(a) x-i w(x) , +oo

	

as

	

x --> +oo.
(b) f,, w(g(t))dt < +oo .
(c) For each n there exists a constant C� such that

1w(n) (x)1 <_ C', (1 +x2 ) .

Lemma 5 . Let f E A°° (D), let f = BSF and let K = {z E T : f (^) (z) = 0
for all n} . Then sing (f) C K, (so that sing (f) is a Carleson set), F E A- (D)
and F is flat on K. More generally, if f E A°° (D) and So is a singular inner
function dividing f (i. e . SISO is bounded), then fISo E A00 (D) . Conversely,
if S is a singular inner function and F E A°° (D) is flat on sing (S) then
FS E A- (D).

Proof of Theorem 2: Let f = fi /f2 , with fi, f2 E A°° (D), f2 :/~ 0 in D,
and let M be the set of zeros of f2, a Carleson set in T . It is obvious that



140

	

J. M. ORTEGA

f (n) E N for all n and that f(") f2 +i E A- (D), and hence (b . l) holds with
qn = n + 1 and g = If2 I . It remains to prove that sing (Sz) C M and that
(S2 f)(") E N+ . Let dvl , dv2 be the measures corresponding to the singular
parts of fl , f2 respectively and dhi,dP2 the ones corresponding to Sl and S2 .
Then Ml = (Vi - v2 ) + <_ Vi, Ec l - M2 = vi - v2, that is, vi = /.t ; + v, i = 1, 2
for some positive measure v. Therefore, sing (S2) C supe i¿2 C M, by Lemma
5 . Also, the singular inner function So corresponding to dv divides both fl , f2
and so by Lemma 5, f, /So and f2 /So are again in A°° (D) . This means that
replacing fi by fl ISo and f2 by f2ISo we can assume that S2 is the singular
inner part of f2 . Then S2 f = f, /F2 , where F2 is the outer part of f2, which is
in A°° (D) by Lemma 5, and now it is clear that (S2 f)(n) E N+ for all n .

Assume now that f E N+ satisfies (a), i . e . f(n) E N+, for every n, and
(b) . Without loss of generality we can assume that the Lipschitz constant for
g is 1, that Ig1 < 1/2 and, multiplying g by a function in A°° (D) vanishing on
M, that g is zero on M. Then the hypothesis of Lemma 3 hold for cp = lIg
in each complementary interval ofM in T (if I°t1 < 1/2cp(t) -1 = Ig(t)1/2 then
g(t + °t) > g(t)/2 and hence

I<P(t+°t)-w(t)1=
I Ig(t)II

(t)
+At)j l - fg(t)IZ

-ZI°tllP(t)IZ)

If h is the function given by Lemma 3, then h1 =h + 2 is a real valued C°°
function in T \ M such that hl >_ 4, 1Ig < hl < 31g and for every n there
exists c� such that

Ihin)
I < cng-3n .

In particular hl has an integrable logarithm . Let now w be a function as in
Lemma 4, with g = log hl . We consider the outer function F =expG with

1

	

~ e" + z
G(z) _

-27r12

	

ett - z w(log h1 (t))dt .

Notice that F E C°° (D \ M) and it is not zero on D

	

M.

We will prove now that all the derivates of F and fF are bounded and tend
to zero at any point of M, which will finish the proof of the theorem in case
f E N+ .

First we estimate IFI on T \M. Since w(x)Ix -> +oo as x ---> +oo we can
write

IF(z)I = hi(z)- ' 1z ) < (31g(z))-P(_)

with M(z) -> +oo as z E T approaches zo E M. We estimate now G(n)

following a method similar to the one in Carleson [2] in the form expressed by
the following Lemma (see Lemma 2 .3 in [1]) :



Lemma 6. Let T be a function of class Cni-1 in some are J = [a, b] of T,
let c be the middle point of J and let A(z) be defined by

If X,o = X, , q,k (ere) = e -rt d lYk_ 1(e'% k = 1, . . ., n -f1 and
Mk = max {~'Pk(e't)¡,a < t < b}, then for z = re", 0 < r < 1

Let z E T \ M. In
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A (z) =
ere

(eit - z)n+1 xY(e' t )dt	,

	

z ED

IA(z)] < const(Ek-ó I z-~a~-k + Mn + 1J1 Mn+1

IG(n) (rz)

	

_
n!

	

',

	

ere
7

j,, (ere - rz)n+1 w(l°g hl (t))dt1

we break the integral into two parts corresponding to the interval of center z
and radious z jg(z) j, which is less than ád(z, M), and its complementary. In
the second integral, je' t -rz1 >_ clg(z)1 and so this integral is bounded by const
jg(z)j - n-1 . In the first integral we use the bounns for h l and its derivatives,
and those of w, obtaining with the notations of Lemma 6,

Mn < cmax{jg(e't )1 - p^,a < t < b}

for some integer Pn .
Using the fact that g(z + Az) > zg(z) for Az < zg(z) we see that
Mn < const g(z) - nn and so we conclude that

IG(n) (rz) j < const g(z) - nn

for some integers pn . From (1) and (2) it follows that

IF(n) (z)1 < const{ g(z) )_a(Z)g(z) -9°

	

z E T \ M,

for some integers qn . Now, by the hypothesis (b.1) on f, (fF)(n) will also
satisfy this bound. This implies that (fF)(n) and F(n) are bounded and tend
to zero at any point of M along T \ M, because A(Z) -> +oo .
The proof will be finished if we show that (fF) (n) and F(n) belong to N+

for any n . Since f(n) E N+ for all n by hypothesis, it is enough to prove that
any derivate of G belongs to N+ . But this follows from (2), because log+ ¡G(n)

is uniformly integrable being dominated by log+ iIg .
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This ends the proof of the suficiency part of Theorem 2 in case f E N+ .
Assume now that f satisfies (a) and (b) and sing (S2 ) C M. This later fact
clearly implies that for some constanst pn

~S2 nl (z) 1 < const d(z, N)-P° < const g(z) -Pn

(recall that we can assume g(z) < d(z, N)) . Hence fS2 is a N+ function to
which we can apply what we have already proved : S2 f = S2 fF/F with F flat
onM. By the last part of Lemma 5, S2F E A°° (D) and the proof is finished.
Remark 1. A particular case of a function which verifies the condition of

Theorem 3 was considered by B.A . Taylor and D.L . Williams ([1]) . It is a
Blaschke product such that if E is its set of zeros then

f log d(e'e ,E)dO > -oo .

In this case , the function d(e' t , E) plays the role of the function g in condition
(b.1) andM =É n T.
Remark 2 . As already said, condition (b.1) in Theorem 2 cannot be replaced

by the weaker assumption that f ~nl extends continuously to T \M for all n .
Consider for instance a Blaschke product whose zero set

E= {rnefd"}n>1

satisfies :
(a)

	

Eñ 1 (1 - r.)" < +oo

	

for every a >,O .
(b)

	

E has {1} as unique acumulation point .
(c)

	

The set {1} U {eien }n> 1 is not a Carleson set .
Every Blaschke product that satisfies (a) has derivatives B(n) E HP for some

p = p(n) (see [5]), and then B(n) E N+ . Trivially B extends analitically to
T - {1}, yet B cannot be expresed as a quotient f, /f2 with f1 , f2 E A- (B),
because E, that verifies (b) and (c), is not the zero set of any function in A°° (D)
(see [7]) .

4 . Proof of Theorem 3

For the proof of Theorem 3 we have to use instead of Lemma 5 the following
Lemma (see [9]) :

Lemma 7 . Let f = BSF E A1 (D) and K = {z E T : f(z) = 0} .

	

Then
sing (f) C K, so that sing (f) is a Carleson set, and F E A1 (D) . More gener-
ally, if So is a singular inner function dividing f(i . e . SISO is óounded),then
f/So is in Al (D) .

Proof of Theorem 3: Let f = f, /f2 , f1, f2 E Al (D), f2 :,A 0 in D and let M
be the set of zeros of f2 wich is a Carleson set in T. It is clear that, f, f' E N
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and, as before, condition (b.1) is satisfied with g = 1 f2 1, qo = 1, q l = 2 . With
the same notations as in the proof of Theorem 2, in this case we have now, by
Lemma 7, that fl ISo and f2 ISo are again in Al (D) . Hence we can also write
f = 91/92 with 91,92 in Al (D) and now S2 is also the singular inner part of
92 . Then S2 f = gl /F2 with F2 E Al (D). Now it is clear that (S2 f)' E N -'- .
Assume now that f; f' E N+ and that (b .1) holds . We repeat the construc-

tion of Theorem 2, thus obtaining an F E A°° (D) flat on M. We must check
now that fF E Al (D), that is, (fF)' E H- . This is, as before, consequence
of the fact that (fF)' = f'F + fF' belongs to N+ and that it is bounded on
TIM. If f E N satisfies (a) and (b) then the above case applies to S2 f, so that
S2 f = fl /f2 with f2 E A- (D) and flat onM. Now S2 f2 E A°° (D) by Lemma
5 and we are done .

Corollary . If f E Al (D) and f :,A 0 in D, there ezists g E Al (D) which has
the same zero set as f in D and such that fg E A- (D) .

Proof. Apply the theorem to 11f.
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