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ON EQUIVARIANT DEFORMATION OF MAPS

ANTONIO VIDAL

Abstract

‘We work in the smooth category: manifolds and maps are meant to be
smooth. Let & be a finite group acting on a connecied closed manifold
X and f an equivariant self-map on X with f|, fixpointfree, where 4 is
a closed invariant submanifold of X with codim 4 > 3. The purpose of
this paper is to give a proof using obstruction theory of the following fact:
H X is simply connected and the action of G on X — A is free, then f is
equivariantly deformable rel. A to fixed point free map if and only if the
usual Lefschetz number L{fj(x 43} = 0. As a consequence we obtain a
special case of a theorem of Wilczynski { ¢f. [12, Theorem A] }.

Finally, motivated by Wilczynski’s paper we present an interesting
question concerning the equivariant version of the converse of the Lef-
schetz fixed point theorem.

1. Preliminaries

We recall here how the classical obstruction theory of deformations of map-
pings (cf. [1]} can be translated to the equivariant case {cf. [3]).

Let & be a finite group, {Y, B) a pair of G-spaces and (K, L} a given pair
of finite regular G-complexes (cf. (4, p. 116] for the definition). A G-map
h: (K,L}y — (Y, B) is said to be equivariantly deformable into B if there
exists a G-homotopy h, : {K,L} — (Y, B), t € I = [0,1], such that h, = A
and hy (K} C B. We say that h is equivariantly g—deformable into B, if the
partial map A ®%L) is equivariantly deformable into B, K = KYUL,K? = ¢
skeleton of K. Note that for regular G-complexes K we have that if g € &G
leaves any point £ € X fixed, then ¢ must leave the smallest subcomplex of
K contfaining z pointwise fixed. Therefore, by an easy inductive argument on
the skeletons of K we can show that K has the equivariant extension property
with respect to L. This allows us to assume that h{z)} = z for every z € L
and t € I in the definition of deformability.

Let us assume that B¥ # @ for all the subgroups H of G that occur as
isotropy groups of simplexes in K, and both B¥ and ¥¥ are pathwise con-
nected. Then it is clear that h must be equivariantly O-deformable into B.
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Moreover, if the inclusion B¥ C Y¥ induces an epimorphism of fundamental
groups my (B¥ |y) — = (Y¥,y) for all y € B, then it can be proved easily,
as in the non equivariant case, that every map h is equivariantly 1-deformable
into B.

Next, let ¢ > 2 and assume that {Y#, B¥) is g-simple for all subgroups H
of G. Then the relative homotopy groups w,(Y¥#,B¥} are abelian and can
be used to define the following generic coefficient system for G, {G/H) =
7, (YH#,BH} (cf.[3]}. Now suppose that h(?q_l} C B. For each orientable ¢-
simplex o in K —L define an element d}, (h)(0) € 7, {Y 7, B}, G, the isotropy
group of ¢, to be the element determined by the map & : (g,6) — (Y99, B¢-).
Since this last pair is simple it does not matter how the base points are choosen
in the definition of d% (k). We can prove that df, (k) is a relative equivariant

coclycle of X modulo L and d% {h) = 0 if and only if & rel. XK' equivariantly
g¢-deformable into B.

Now consider the n—dimensional obstruction set 0% {h} to the equivariant
deformation of the map £. It is a subset of the Bredon cohomology group
HL{K,L;@;)} (cf. [3]} and is defined as in the classical case. We have that
0% (h) # 9 if k is equivariantly ¢ — 1 deformable into B and if & is equivariantly
g-deformable into B, then 0% (k) contains the zero element. Next we wish to
indicate how the converse of this latter statement can be proved.

Let h be equivariantly ¢ —1 deformable into B, ko, k, : (K,L) — (¥, B} two

equivariant maps which satisfy the conditions h,-(fq_ Y C B,k = h,i=0,1,
¢

and holfq-z = hil-}?q—z. Then it is possible to associate to any eguivariant
homotopy h; between kg and h; which has the property that k{z} = ho{z} =
hi(z) foraliz € K™% an equivariant separation cochain d% (he) € (K, Ly 0}
satisfying the equation
(1) ' §dE " (he) = df (h1) ~ d (ho}.
This separation cochain is defined as follows: Let R be the restriction of &, to
K", By the classical theory applied to this map {cf. [1]}, there exists a cochain
d*-H{RhEY € COH(KH LH ;@ (G/H)) with 6d¢ M {pH) = d?{nf') — &(R{).
Because we are dealing with equivariant maps we have &, d? (R )(0} =
d?-1(hH {ga)) for ¢ : G/H — G/H' a morphism in the orbit category and
o a ¢— 1 simplex in K. Then put d% '{k;)(o) := d?"1{h{"}{0) and we have
f‘é‘ Yh) € o YK, L;&,) satisfying the equation {1}.

Furthermore, if 4 is an element of the cochain group C%™'{K, L;@,} and h is
any map satisfying the condition h(ﬁq_-l] C B, then it can be defined an equiv-
ariant deformation h; of k such that &, {z} = h(z) forallz € x° Jhy (KT 1) C
Band di Y{h;} = d {cf. [3]). Finally, by making use of this separation cochain
we can easily prove the following:
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1.1. Proposition. The G-map h ¥s equivariantly g-deformable into B if
and only if o € 0% ().

Suppose now that (Y, B) is 2 G-locally trivial pair over K; that means we
have a G-map p : ¥ — K with p(B} = K and for each z € K there is a
G—invariant neighborhood U of z and G:—homeomorphism of pairs

Yy : (p Up, " U) — (U x p~z}, U x p; *{z))

such that p¥y (z,y} = z for all {z,y) € U x p~ {z} and p, = Ps-
It is known that a G-locally pair over a G—complex is an equivariant {Serre}

fibration (cf. [2]). Therefore we have the equivariant version of Lemma 5.1 in
{5] and consequently the following :

1.2. Proposition. If h is a cross section of the G-locally trivial pair (Y, B}
over K, and h is equsvariantly deformable into B then it ts also in the famuly
of cross sections.

2. Application to selfmaps on manifolds

Throughout we assume maps and manifolds are smooth. Let @ be a finite
group acting on a pathwise and simply connected closed manifold X. Let
f (X, A} — {X, A} be a G—map where A is closed invariant submanifold of
X and f|4 is fixed point free. In order to apply the preceeding material to
this situation let us assume that the manifolds X¥ are pathwise and simple
connected for all subgroups H of G. Choose an equivariant triangulation of
X with A a G-invariant subcomplex (cf. |7, p. 216]}. Considered locally at
z € X, the G—manifold X looks like & G,~representation in the tangent space
T. X {cf. [8]). Consequently, if A is the diagonal, it can easily be proved that
the pair X = (X x X, X x X — A) with p: X x X — X the projection on the
first factor is 2 G-locally trivial pair over the G-complex X. By Proposition 1.2
the G-map f is equivariantly deformable to a fixed point free map if and only
if the cross section (1, f) : X — X x X, (1, f)}(z} := (z, f(=)), is equivariantly
deformable into X X X — A. Finally, by repeated application of Proposition 1.1
for (K,L} :={X, A),(Y,B) = {X X X, X x X — A} and & := (1; f), we obtain
the following result:

2.1. Theorem. The G-map f : {X,A) — (X, A), with fi4 fizpointfree,
is equivariantly deformable rel. A to fized point free map if and only if 0 €
0%{f) C HA(X, A;®,), where n =dim X and &, ts the coefficient sysiem given
by @n (G/H) = m, (XH).

To simplify the notation we have written 03 (f} instead of 0% ((1, f)). Note
that o € 02{f) if and only if o € 0L{f} for all g,2 < ¢ < n. For a given
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equivariant triangulation of {X, A), only the g-simplexes ¢ in X — A with
g =dim X%- contribute in a non trivial manner to the obstruction set 0% (f}.
This is because for ¢ <dim X% we have 7,{X€<) = 0. Finally there is the
fact that the condition o € 0% {f} does not depend on the triangulation we have
choosen. This follows from the Theorem 2 in |7] together with the observation
that after equivariant subdivision, the inclusion of the given triangulation into
a subdivision, induces an isomorphism in cohomolegy, mapping in a 1-1 fashion
one obstruction set info the other.

In order to relate the condition o € 0% (f) of Theorem 2.1 with the Lefschetz
number of the map f we assume that G acts freely on X — 4 and codim A4 > 3.

- Our next step is to prove that in this special case the group HZ{X, A;@,) is
torsien free.

Let 7 be a closed invariant tubular neighborhood of A equivariantly diffeo-
morphic to an € > 0 disc bundle D, in the normal bundle N{4, X) to A in X,
via h: U — D (cf. |4, p.306]). Then A is an equivariant strong deformation
retract of U, and the groups H3 (X, A;&,) and HS (X, U;,) are isomorphic.
Let V := h™1(D, ;). Clearly V C U, and the inclusion (X -V, U-V) C (X,U)

induces an isomorphism Hj (X, U;&,) ~ HZ (X - I:’,U - E’;&n).
Consider now the following equivariant deformation @; : X ~ A —+ X — 4 of
the identity on X — A. For z € X — A we define

z it zeX-U
B (z} :=

R lph(z) if z€U

where p, : D, — N, — D, - N, and N, =the zero cross section is defined by
pelz, v} = (z,{1 — t)v + tev/||v|[}. On N{A, X) we have an ortogonal metric,
hence the maps p, are G-maps and, consequently, the maps B, are equivariant

diffeomorphisms. However §; {X -V) = X — U and 9, (U - V) U U hence 8,
induces an isomorphism @} : HZ {X — V U-v; ) — HR (X — U U- U @n ),
where {X — 5’, - (}} is an n—dimensional compact manifold with boundary on

which & acts freely. Furthermore if the codim 4 > 3, then we have that path
components of X — A are simply connected, and consequently the manifold

X — U is also simply connected. Finally, put (¥,3Y)} := (X - 5’, u— 5’)

2.2, Lemma. With the prewious notation and taking the orientation induced
on Y by that on X, we have that the group HZ(Y,8Y;0,) is torsion free.

Proof: First we note that the group HZ{Y,8Y ;@,) is, by definition, equal to
the group H" (Y/C,8Y/G; m, (X)) where 1, (X) = 7 have the right Z G-module

structure given by the coefficient system &,,. Second, and this is essential for
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the proof, we use the fact that if we consider the orientation on.Y induced by
that on X, then the G-module structure on 7 coincides with the orientation
homomorphism w : 71 (Y /G) — Z; for the manifold Y/G, that is &, {g) = 1z
if wg) =1 and &, {g} = —1; fw(g) = —1.

By Theorem 2.1 in [11], {Y,3Y} is a Poincaré pair of formal dimension .
Then Lemma 1.2 in [10] yields that the cup product with the fundamental class

[Y/G,8Y/GIn: H*(Y/G,8Y/G;1) — H,(Y/G;1')

is an isomorphism, where 7 is considered with the ZG-right module structure
given by &, and z* is the left ZG-module defined as follows. For A = Zn{glg
ZG let X := En(g)w(g)g~* and define g2 := 2§ = w(g)w, (¢)(z). However with
the above choice w({g}w.{g) is always the identity and Z* is trivial as Z2G-left
module. Therefore H,{Y/G;7?} is a free abelain group with as many generators
as there are path components in Y/G. This proves the lemma. B

Now consider the homomorphism induced in cohomology by the inclusion
Co{X, Aw,) — CT X, A;2),

o Ho{X, A0, — H' (X, 4;2): 8.

In the opposite direction, let @ be the transfer. At the cochain level, it is defined
as follows: Bz(o) 1= dec Wn{gle{g~ o), z € Z™(X, A; 7n{X)}). We have that
the composition Sa = |G|, muitiplication with |G|, the order of the group G.
From this equation and the fact that the group HJ (X, 4;®.)} has no torsion,
it follows that & must be monomorphism.

On the other hand a maps the n-dimensional obstruction set 0% {f} into the
classical one. This last set has been computed by Fadell in [5]. It has only one
element, the Lefschetz class of fi(x 4) with coefficients in Z, and this is zero if
and only if the usual Lefschetz number L(f|(x,A)) = 0. In summary we have
the following:

2.3. Theorem. Assuming in addition to the hypothesis of Theorem 2.1 that
G acts freely on X — A4 and codim A > 3, we have that the G-map f : {X, A} —
(X, A) is equivariantly deformable rel. A to a fized point free map if and only
if L{fiix.4)} = 0.

2.4. Corollary. Suppose G acts semifreely on X with X% a pathwise and
simply connected mansfold of codim X¢ > 3. Thena G-map f : X — X is
equivariantly deformable to o fized point free map if and only if the Lefschetz
numbers L(f} = L{f€) = 0.

2.5. Corollary. Suppose G acts freelyon X. ThenaG-map f: X — X 1s
equivariantly deformable to a fized point free map if and only if the Lefschetz
number L{f} = 0.

This last corollary in the case dim X = 2 is particulary simple. Here X
must be equivariantly diffeomorphic to $%, with the antipodal action of Z;. An
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equivariant map f with L{f} = 0 has degree —1 and is equivariantly homotopic
to the antipodal map (cf. [8, p. 212]).

We can also mention here the corollary 6.36 in [8]. There Fadell gives, in
a particular case, an obstruction theory proof of Corollary 2.5. He assumes
in addition that all maps g : X — X are homotopic and proves that the
induced map f/G : X/G —+ X/G can be deformed to a fixed point free map.
Consequently, the map f is equivariantly homotopic to 2 fixed point free map.
We have also proved this last fact, as in the case of the antipodal action of Z,
on 8", where all induced maps on RP?" have fixpoints.

2.6. Remark. The condition codim X€ > 3 in the Corollary 2.4 is only
necessary in our proof of Theorem 2.3 {see comments before Lemma 2.2}. How-
ever, our Corollary also holds without restrictions on the codimension. To see
this, it is enough to note that the space X — X% /G of orbits is connected and
consequently the Wilczynski invariant {cf. [12, p. 50|} vanishes if we assume
that the Lefschetz numbers L(f¢) and L(f) are zero.

We denote by G-simply connected manifold a G—manifold X such that X¥
is 0 and 1-connected for all subgroups H of G.

Problem. Let f : X — X be a G-map, where X 1s a G-simply con-
nected mantfold, Suppose that the equivariant fized point index of [ 1s zero or
equivalenty, L{f¥} = 0 for all subgroups H of G. It is then true that if f is
equivariantly deformable to a fized point free map?

Notice that what we need to prove is that the Wilezynski invariant of f is
zero. For free and semifree actions the answer of this quesiion is yes, But I do
not know the answer in the general case. A negative answer would provide an
example of an equivariant property of a G-map f, i.e. “equivariant deforma-
bility to a fixed point free map ”, which does not necessary hold even if the
maps f# : X# — X" are deformable to fixed point free maps in the classical
sense.
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