A REPRESENTATION THEOREM FOR CERTAIN BOOLEAN LATTICES

JOSÉ RÍOS MONTES

Á	he	÷	rac	÷
~		L	I cu.	f.

Let R be an associative ring with 1 and R-tors the complete brouwerian lattice of all hereditary torsion theories on the category of left R-modules. A well known result asserts that R is a left semiartinian ring iff R-tors is a complete atomic boolean lattice. In this note, we prove that if $\mathfrak L$ is a complete atomic boolean lattice then, there exists a left semiartinian ring R such that $\mathfrak L$ is lattice-isomorphic to R-tors.

1. Background. Throughout the following, R will denote an associative ring with unit element and R-tors will denote the complete brouwerian lattice of all hereditary torsion theories on the category R-mod of unitary left R-modules. Notation and terminology concerning R-tors will follow [1].

If $M \in R$ -mod, let us denote by $\xi(M)$ the smallest element of R-tors respect to which M is torsion; the unique minimal element of R-tors is then $\xi = \xi(0)$. We will denote by R-simp a complete set of representatives of isomorphism classes of simple left R-modules.

A lattice $\mathfrak L$ is said to be *complete* if arbitrary meets and joins are defined in $\mathfrak L$. In particular, in a complete lattice there are a minimal element and a maximal element, which will be denoted by ξ and χ respectively. An element a of a complete lattice $\mathfrak L$ is an atom if $a \neq \xi$ and b < a implies $b = \xi$; we will denote by $\mathfrak L(\mathfrak L)$, the set of atoms of $\mathfrak L$. $\mathfrak L$ is said to be atomic if for every $x \in \mathfrak L$, there exists $a \in \mathfrak L(\mathfrak L)$ such that $a \leq x$. $\mathfrak L$ is locally atomic if every element of $\mathfrak L$ is a join of atoms. A complemented distributive lattice is called a boolean lattice; in a boolean lattice, complements are unique.

For any ring R, the atoms of R-tors are the torsion theories of the form $\xi(S)$ with $S \in R$ -simp. As a result, R-tors is an atomic lattice and R is left semiartinian iff R-tors is a complete atomic boolean lattice or iff R-tors is locally atomic. See III of [1] for details.

2. Complete Atomic Boolean Lattices. In [2], professor Golan asks if for every boolean lattice \mathfrak{L} , there exists a left semiartinian ring R such that \mathfrak{L} is lattice—isomorphic to R—tors. Inasmuch as for every ring R, R—tors is complete atomic lattice, in this note, we will consider complete atomic boolean lattices.

112 J. Rios

Lemma 1. If £ is a complete atomic boolean lattice, then

- a) L is locally atomic
- b) The decomposition of every element $x \in \mathfrak{L}$, $x \neq \xi$ as join of atoms is unique.

Proof: The proof follows easily by using proposition 4.5 of Ch. III of [3]. ■

Corollary 2. Let $\mathfrak L$ and $\mathfrak L'$ be complete atomic boolean lattices; if $\varphi : \mathfrak A(\mathfrak L) \to \mathfrak A(\mathfrak L')$ is a bijection, then φ can be extend to a lattice isomorphism $\overline{\varphi} : \mathfrak L \to \mathfrak L'$.

Theorem 3. Let \mathcal{L} be a complete atomic boolean lattice; then there exists a left semiartinian ring R such that \mathcal{L} is lattice-isomorphic to R-tors.

Proof: Let $\mathfrak L$ be a complete atomic boolean lattice; by Corollary 2, it is enough to show a left semiartinian ring R and a bijective correspondence from $\mathfrak A(\mathfrak L)$ to R-simp, then we will have that $\mathfrak L$ is isomorphic to R-tors.

Case 1: 2(£) is a finite set.

Let us supose $|\mathfrak{A}(\mathfrak{L})| = n < \infty$ and let $R = \mathbb{Z}_2^n$ be the ring direct product of n copies of \mathbb{Z}_2 , the integers modulo 2. Then |R-simp| = n and inasmuch as R is semiartinian ring, we are done.

Case 2: $\mathfrak{A}(\mathfrak{L})$ is an infinite set.

Let us denote $|\mathfrak{A}(\mathfrak{L})| = \alpha$ and let $A = \mathbb{Z}_2^{\alpha}$ the ring direct product of α copies of \mathbb{Z}_2 . Now, let R be the subring of A generated by the sum $I = \mathbb{Z}_2^{(\alpha)}$ and the unit element of A. In R, the projective simple modules are, except by isomorphisms, the simple direct sumands in the decomposition $I = \mathbb{Z}_2^{(\alpha)}$. On the other hand, the singular simple modules are all isomorphic to R/I. Then |R-simp| = α and so, there exists a bijection between $\mathfrak{A}(\mathfrak{L})$ and R-simp.

Finally, it is not difficult to prove that R is a semiartinian ring, and so we complete the proof.

References

- 1. GOLAN J., "Localization of noncommutative rings," Marcel Dekker, 1975.
- GOLAN J., "Thirty open problems concerning torsion theories," Secretariado de publicaciones y departamento de algebra y fundamentos, Universidad de Murcia, 1986.

3. STENSTROM BO., "Rings of Quotients," New york-Berlin, Springer Verlag, 1975.

Instituto de Matemáticas Area de la Investigación Científica Circuito Exterior, Ciudad Universitaria México 04510, D. F. MÉXICO.

Rebut el 3 de Juny de 1987