FERRODING ROSENTHAL OPERATORS

TERESA ALVAREZ

Abstract

In this paper we show that a Rosenthal operator factors through a Banach space containing no isomorphs of I_1.

All spaces are to be Banach spaces. If X is a Banach space, X'' denotes the bidual of X, J_X is the canonical isometry embedding X in X'', B_X is the closed unit ball of X and I_X denotes the identity operator on X. Let $L(X,Y)$ be the set of all continuous linear operators from X into Y.

Recall that an operator $T \in L(X,Y)$ is said to be completely continuous if every weakly convergent sequence (x_n) is mapped into a norm convergent sequence (Tx_n). The class of all completely continuous operators from X into Y is denoted by $Cc(X,Y)$ and $Co(X,Y)$ will denote the space of all compact operators from X into Y.

Let $T \in L(X,Y)$. The T is called a Rosenthal operator if $ST \in Co(X,Y_0)$ for all $S \in Cc(Y,Y_0)$, where Y_0 is an arbitrary Banach space. Using a theorem which is due to Rosenthal [8] and Dor [2] in the real and complex case, respectively, one gets that T is a Rosenthal operator if and only if it maps bounded sequences into sequences possessing weak Cauchy subsequences (see for example [6]), and hence T is a Rosenthal operator if and only if $T(B_X)$ is $\sigma(Y'',Y')$-relatively sequentially compact in Y''.

The Rosenthal operators are called weak Cauchy operators by [5] and conditionally weakly convergent operators by [7].

An operator $T \in L(X,Y)$ is called a ℓ_1-singular operator if for each $S \in L(\ell_1,X)$, the composition TS is not an isomorphic embedding [5]. So, $T \in L(X,Y)$ is a Rosenthal operator if and only if it is a ℓ_1-singular operator. $Ro(X,Y)$ will denote the class of all Rosenthal operators from X into Y.

Let $N\ell_1$ be the space ideal of all Banach spaces containing no isomorphic copy of ℓ_1 and let $Op(N\ell_1)$ be the operator ideal of all operators which factor through spaces in $N\ell_1$.

In this note we shall prove that $Op(N\ell_1)$ coincides with the class of all Rosenthal operators. For this end we shall use the construction of Davies-Figiel-Johnson-Pelczynski [1]. Let W be a convex, symmetric and bounded
subset of a Banach space X. For $n = 1, 2, 3, \ldots$, the Minkowski functional $\| \cdot \|_n$ of the set $U_n = 2^n W + 2^{-n} B_X$ is a norm equivalent to $\| \cdot \|$. Define, for $x \in X$, $\| x \|_n = \left(\sum_{k=1}^{\infty} \| x \|_k^2 \right)^{\frac{1}{2}}$; let $Z = \{ x \in X : \| x \|_n < \infty \}$ and let j denote the identity embedding of Z into X; then $(Z, \| \cdot \|_n)$ is a Banach space and j is continuous [1, lemma 1, (ii)].

Theorem. Let X, Y be Banach spaces and let $T \in L(X,Y)$. Then the following properties are equivalent:

(i) $T \in Ro(X,Y)$

(ii) $T \in Op(N\ell_1)(X,Y)$.

Proof: (i) \Rightarrow (ii). Suppose that $T \in Ro(X,Y)$. With reference to [1], put $W = T(B_X)$, $M = \{ y \in Y : \| y \|_n < \infty \}$ and let j denote the identity embedding of M into Y. Let (y_n) be a sequence of elements of W, then (y_n) has a subsequence (y_{n_j}) such that $(J_Y y_{n_j})$ is (Y'', Y')-convergent in Y''. Hence $J_Y W$ is $\sigma(Y'', Y')$-sequentially compact in Y'' and so by virtue of [1, lemma 1, (xii)], $J_M B_M$ is $\sigma(M'', M')$-sequentially compact in M''. This implies that $M \in N\ell_1$.

The operators $j^{-1}T : X \to M$ and $j : M \to Y$ provide the required factorization.

(ii) \Rightarrow (i). It is trivial. ■

Remark 1. In a 1980 paper [4], S. Heinrich showed that if $T \in Ro(X,Y)$ then $T \in Op(N\ell_1)(X,Y)$ proving that the operator ideal of all Rosenthal operators is injective and surjective and satisfy the Σ_p-condition for $1 < p < \infty$. That is, for arbitrary Banach spaces $X_n, Y_n, n \in N$, the followings holds:

If $T \in T((\Sigma X_n)_p, (\Sigma Y_n)_p)$, and $Q_m T P_m \in Ro(X_m, Y_n), n, m \in N$ then $T \in Ro((\Sigma X_n), (\Sigma Y_n))$ where P_m and Q_n denote the projections of $(\Sigma X_n)_p, (\Sigma Y_n)_p$ onto the coordinates X_m and Y_n, respectively.

Remark 2. Other characterizations of the Rosenthal operators were obtained by A. Fakhoury [3].

References

Departamento Teoría de Funciones
Facultad de Ciencias
Universidad de Santander
Santander, SPAIN.

Rebut el 18 de Maig de 1987