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EVALUATING A p-TH ORDER
COHOMOLOGY OPERATION

J. HARPER AND A. ZABRODSKY

Abstract

A certain p—th order cup product is detected by a p—th order cohomology
aperation. The result is applied to finite H-spaces, to show that several
properties of compact Lie groups do not hold for arbitrary torsion free
finite H-—spaces.

1. Summary of results

In this paper we give the detailed computations of results announced in [3].
As the computations involve many technical details we try to present the main
line of proof separately in Chapter 2-filling in the missing details in Chapters
3-7. In Chapter 8 we bring some applications.

Let p be a prime. Throughout this paper we write H* (X} = H* (X, Z/pZ).

Let ¢, denote an n + 1 order mod p cohomology operation associated with the
n+1 times

—_——
Toda brackets {P*,...,PP ', Py {a=1Hnisevena=p—1if nis odd). By
this we mean a stable cohomology operation universally defined on a spectra
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E, with a Postnikov system given by:

.ﬂ kn
QK,, J—I‘ Eﬂ —_— Kn-t-l
1 .
l
.r k'
QK. ., E, — K,
8
(D1) E_,
J
!
i1 k;
QK, —— B, — K

Pzzko
Eo =Ko -— K1

with the properties:

1.0.
(1} Ky = K(Z/pZ,0) -the Eilenberg MacLane Spectrum.
> _ t, - spg+g—25 r=2s+1
(2) for r > 1, K XK, b {qu—2s+1 0<r=2s
g=2p—2.

.)‘ hr h’“ 3 Kr
(3) OK, , E, —E,_jandfor0<r<nkE,,; o, E, — K, 1 are
{co} fibrations.
{4} [k, 03] € [QK,, K, 1] = P € A{p} where

e =11 for r - even
’ p—1 for r-odd

én is then given by the universal example {in the sense of [1]) {z = H%(h;0...
ohy i, B, , u=Hintrt{k  JE+1a)).

1.1. Remark. We shall use the notations of D1 to describe a non stable
{say m — 1 connected) representative of ¢,.. In that case the maps in (3] are
fibrations, Ko = K{Z/pZ,m}, K, = K{Z/pZ,m +1,).

The main purpose of this paper is to show:

The Main Theorem.

{1} ¢p_1 exzists and if n £ {—1) mod p then PPy, € H™WTYK(Z/pZ,
2n+1)) isin the domain of $p_1 andigne1 - Plignrr - Plignes o PP iy €

€ #p-1({P 12n41)-
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(2) 0 ¢ ¢p—-1(Pn32n+1)-

The principal applications of the main theorem {which generalizes results in
[11]} is the construction of counterexamples that the following properties shared
by Lie groups, are not valid in general for finite H-spaces:

1.2. Examples.

1.2.1. Let X be a compact connected Lie group. If H*{X) = A{Zom,114---
cerZam 41} T S my < --- < m, then there exists 2 map f: X — §?m 1!

with z5,, 41 € Im H*{f).
1.2.2. It was recently proved by H. Miller {{4]) that for X = O(n),U(n}, Sp(n)
{and consequently X may belong to a larger family of Lie groups} X splits stably
according to the {integral} algebraic weight of its generators, i.e. if H*{X) is
as above E° X = ¥, VY, V... VY, where H*{Y;} contains all the monomials
Lamg, +1 " T2m 41 00" Z2m, +1 in H'(X)‘
1.2.3. It is also well known {e.g: see |2, theorem 1.1] with f = £7T, T - the
A-th power map) that for any H-space X with H*{X) as above TX = ¥,V
VY V---VY,_, where H*(Y;] contains all the monomials in the z,,, 4’5 of
length j mod p—1 {these will be called elements of mod p — 1 algebraic weight
)

Thus, the following question naturally arises:

1.3. {See e.g: [9, problem 14|} Which of these Lie groups properties are
shared by finite H-spaces in general?

1.3.1, If X is 2 modp H-space with

H‘(X) = A(x3m1+1:I2m:+13"-a32m,+1)

does there exist a map f: X — %™+ with z,,, 4, € ImH*{f}?
1.3.2. Is there a mod p stable splitting of 2 mod p finite H- space according to
the {integral) algebraic weight of its cohomology?
1.3.3. {The weakest common property}: Let X be as in 1.3.2. Is there a stable
map fi: X —s (I 5% §2me+1  with Zom,+1 € Im H* (f]?

All these questions are negatively answered by the following:

1.4. Example. (See [3]): There exists a modp H-space (p > 5) X with
H*(X) = M®aps1, P Zaps 1y oy PPZ2p4 1 ). It follows from the main theorem
that there is no stable map f: X — QL™ §%°"+! with PPz,,,, € ImH*(f).
(See Corollary 8.6)

A consequence of the above example {and similar co dimensional examples) is
that for an arbitrary stable splitting of K{Z/pZ,2n + 1) {n # —1{p}) any sum-
mand containing P"1;,,, in its cohomology will have to include the product
a1 " Pllongr ne s PP g0

Finally one can deduce a non realizability theorem:
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1.5. Proposition. {See Corollary 8.5} If n # —1 mod p then there is no
mod p H-space {or even a A-power space) X with

H.(X} = A(IQn-{»laPIz?n-{»l!”')Pp_1I2n+l)-

If n is large enough there is no space with the above cohomology. {Note that
Moy 0, P 2ap 4y .., PPz, ) is the mod p cohomology of one of Nishida's
Jactors of SU(p® —p+ 1) {{7]}. Hence n # —1 {p} ts essential}.

2. Outline of proof

Evaluating & p-th order cchomology operation cannot be expected to be an
easy task. Generally it involves many technical details. Still, the core of the
computations has a definite straight forward line of thought. In this section
we shall try to outline the proof of our main results referring the reader to the
auxiliary technical computations in the following sections. The first observation
{3.1) is that ¢,_, exists. (This is obvious for p = 2 thus we restrict ourselves
to p-odd). The reason is quite simple: Assuming ¢,_, exists, the obstruction
for the existence of 6, is a class in the cohemology of E,_ ;. It turns out that
for small r the cohomology of E,_, in the appropriate dimension is zero.

The fact that P"4;,.4 is in the domain of ¢,_, is embedded in the inductive
proof of the main theorem but essentially it is a consequence of 4.3.

The principal idea of the proof of the main theorem is as follows: Let K =
= K{Z/pZ,2n + 1)} and let

TK=B, CB,CB,C---CB, =BK=K(Z/pZ,2n+2)

be the Milnor-Rothenberg-Steenrod-Milgram filtration {[5], [8]) of the classi-
fying space of K. We shall use the following notations:

2.0.

{1} ¢,..: B. — B, is the inclusion, with the abreviation z, , 1, =1,.

{ii) B.uCB,., = B.,B,_,, j:B, — B,,B,_, denotes the inclusion.
(iii} &,: B,, B,_; — L.B,_, the third leg of the Puppe sequence.

(iv) 1=15,,,, denotes all fundamental classes in H2**?(B,}, 1<r < co.

We evaluate ¢,_; on P 1,4, € H?*PP2 (LK) = H?**P*3(B, ) usinga 2np+-1
connected non stable version of {D1). Thus one reads D1 with K, = K{Z/pZ,
2np+ 2+ t,) {tc = 0}, ¢, as defined in G.1 - (2).

We start an inductive process:
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B, b — By, = K{Z/pZ,2np + 2)
l:‘, lko:Pl
P timen
et e,
vL=tR1® - D1
(Dz}p Bps Bp— i - Kl
L -
5By, ————- - ___ BK,
n £ —1 {mod p)
[ap] = .,lﬁpnsznﬂh 50 p1[ﬁ9132n+2 =Pt = 3:n+g = [jp}(3®1®"'®3] =
r times

= [uy 7, Note that H*(B,,B,,) ~ SH{K)® SH* (K} ® ---® SH"(K)
thus the notation ¥, = 1@+ ®12. Also note that the map induced by &3, _, 08,
from H*(B,_,,B,_,} to H*(B,,B,_,) corresponds to d,_,:B._, — B, in
the cobar construction of A = H* K {with the appropriate shift of dimension).

Any choice of homotoples W:kq o @i, ~ u,05,, &% ~ PP~ Yok, induces a map
@,: LB, ) -~ BK, and its adjoint #,4: B,_; — K, factors up to hornotopy

(Bp-1 ky N H
as B,_y —— B, — K, hence 4,4 represents ¢, {P"2;,42). To continue the

inductive step one has to show that @, factors {up to homotopy) as

Pl Up—12
By_y =5 B, 1,Byly — K.

Inductively, suppose one has a (homotopy} commutative diagram {for 3 < r <
< p)

L

B, i E, .
(Dz)’ Brs Br-— 1 : Kp—r+1
B, _, UL S BKP.,r+3

where [£,_, 0@, | represents ¢, {P™1,,42). Any choice of homotopies W:k,_, o
%, ~ %, 0J and £rx ~ P-r+1 ok . (which exists by 3.1) induces a map
4.:LB, ., — BK,_,,. whose adjoint (#i.)u factors as B,_, il vt 1

[P .
5, p-r+2, hence, (&, )y represents -, (P toniq).
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To proceed inductively one has to show that &, factors as

(2,—:)%

Cir-1
B, —— LB _,, LB _,

or equivalently, (4, }, factors as

BKp—r+2

Fr=1 Breg
Br—l — r—l:Br—2 _'_"_"-"Kp—r+2'

This is proved in 7.1 using the following preparatory steps:

2.1. Fix A —a primitive root of unity mod p. The A-th power map on K
is an co-loop map hence induces self maps T, . T5,.5,_,,2%5,., = Teo._,
on B,,(B,,B,_;),EB,_ , respectively and ¢, ,,7 ,6 commute with the T’s
up to homotopy. Similarly the stable multiplication by A induces self maps
Te, Tk, Tox, = OTk, {which are co-loops maps) on E;, K;,(QK; in {D1).
One can easily see that in (D2}, &,,u, commute with these self maps T.
Choosing Wik, o @i, ~ u, 0 f,, &i* ~ PP~! ok, appropriately (for £ any
stable null homotopy will do} one may obtain &, that commutes with the Ts:
t, oTrp, , ~Tpx, ot,. (see 5.1, 5.2, and 5.3).

Now, using self maps theory {section 5) one can make sure that in all induc-
tive steps (D2}, =% (D2),_, all maps obtained commute with the self maps
T. This translates to the algebraic fact that the classes {v,]| € H*(B,,B,_,) =

r times
~ LH' (K)®---® TH" (Ej have algebraic weight 1 mod p — 1. (i.e: [u,] =
=Xa;, v, v, =52, L2 ® --®@ Lz, 2 € H*{K) is a monomial of primitive
z =z\ ---3(5:) ) zi.") e PH{K)and Y} & =1 {mod p— 1}}.

2.2. To prove 7.1 one has to show that %, o Zi,_, ~ %. The first step in the
proof uses 4.3 to show that W could be chosen {without viclating the restriction
required to obtain the properties discussed in 2.1} so that 4, o B¢, ., ~ +.

2.3. Toshow that &, 0Xd, ,_; ~ *implies &, 0%¢,, 4,1 ~ *fors <r—2one
observes: 4, 0 Li, ._; ~ * is equivalent to the existence of &,:XB,,,, LB, —
BK,_ ,,2,8 0Lf, 4 ~ @, 0%,,.;,.4,[C ] has an algebraic weight 1 mod p—1
and d,[8}] = O in the cobar construction. Following computations in the
cobar construction {6.2), {#/] = d,{d",) and 4, 0 £1,4 1 ,_1 ~ .

2.4. Now one deduces the existence of (D2}, forp > r > 2, and (4, ), B, —
K, represents ¢,_;(P"12,42). As I?"(Bl) r~ H*{B,,B,) (B, = *) one can
write (#,}4 = u, obtaining classes v, € B, = H*(B,,B,_;), 1 € r <
< p subject to the conditions: u, have {mod p — 1) algebraic weight 1, u, =

p timen
f_“'_"h‘-_—“\
=1®@:® - ®z, Pty =d,._,u,_,;. By 635 'y, € H{K) has the
form €,2- P2+ P2 ... PP~ %2 {mod ImP*) and the first part of the main

theorem follows.

. To show that 0 ¢ ¢,., (P*13.4.) (n & —1{p)) suffices to show that for

sorne space X and some class £ € H* X}, D¢ ¢,_,{P*z). (Przyny, is
obviously in the domain of ¢, _, being the image of P1,,.,}. This is done in
Chapter 8 where some examples and applications are discussed.
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3. The existence of 4,

We use the notation of the stable version of {D1).

g—r-—-1

3.1. Proposition. If r{r < ¢} satisfies the fnequality [r/2] < > 177

> o P (g =2p—2) then ¢, exists. In particular $,_, exists.

Proof: ¢ = P! and ¢, obviously exist so one may assume p > 2, r > L
Now suppose ¢, _; exists, i.e. there exists amap k- E,_, — K, = 2~ K,.

ks pon
The obstruction for the existence of ¢, is the composition E,_, — K, ——

LK. (@, =1ifniseven,a, =p—1ifnis odd}.

- Fn_1
Now (IK,_, = 'K, _, il n_1 — K, Is given by PP~ <~ hence
hpoa w
% ~ Prok,_;07,_, and Perok,_, factorsas E, , —— E,_; — SK.4, =

— St tiK, W

If one can show that Hi~+:t'{E .} =0, 3.1 will follow. Using the exact
sequences H*(E; ,} — H'(E;,) — H'(Z 'K;) and H*(E,) = H*(K,)
suffices to prove that H*»+:*} (K} = Hi~a1 P HEH K = Hi»+ i~ 942K ) =
=0 for j > O {f, = 0O} provided that [n/2], < 37" 7' 30 pf = Ajnes-

Thus, putting ¢, = v,g+¢—s+1, t.y; —=t; +2 = mg+ k where m <
2y if nis even

Ve :kzq_n_l-lavn :{an H H
+1 trT [2]p—1 ifnis odd.
3.1. Will follow from the following:

n

3.2. Lemma. For2<k<g-landm <y 2%  p = X, one has
H™*"*(Ko) = 0. In particular the inequality holds if m < v,,, < [2)p <
< Aq—n-}-l S Ak'

Proof: Every element in H™?**{K,) has the form a: where « is a sum
of admissible monomials in A(p},| @ |= mg + k (see [10, p. 77]}. An ad-
missible monomial of dim = k& mod ¢ has to contain at least .k Bocksteins.
The lowest dimensional admissible monomial with k Bocksteins is 87"~ "+ +1
Bpet vkt | gpe+1gpig ang its dimension is Ayg + k. W

4. Some computations in the Steenrod algebra

Let w € A{p) be 2 linear combination of admissible monomials of excess
< 2n 4 1. (See [10]). If P'w is a sum of admissible monomials of excess
> 2n + 1 then {modulo ker 7'} w is a linear combination of elements of one of
the two forms:

Nw=Prw , mZ -1{p), [{lwe]| +1}/2} = m —n.

(w={{m+1)pP™ — P Blw, , mZ0, —1(p) , [|wo| /2] =m —n
where w, is an admissible monomial.

One has the following:
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4.1. Proposition. Let K= K{Z/pZ,2n + 1). Given 0 # u = wiy,,; €
€ PH'(k/Z[pZ){w € Alp)} where .

2np+1+kpg—2k+1 2<2k<p-1

1<s<p—-1

2np + L+ kpg + sg — 2k {25%519_3

{the latter is void for p=3).
If Plu=0 then Plw =0 in Alp).

Proof: We may assume that excess w < 2n + 1 and Ply = 0 implies excess
(P'w) > 2n + 1 hence w has one of the two forms listed above:

(i} u = P™wytonsas | Wolznsr [=2m or 2m+ L.

(Nu={{m+1)8P™ — P™ Blwotznt1s |Wwolznss |=2m+1 or 2m+2
hence

|ej=2mp or 2mp+1 (casei).

|u|=2mp+2 or 2Zmp+ 3 {case ii).

The hypothesis on ¢ excludes |u |= 2mp + 2, |u|= 2mp can occur only
ift=2np+pg {k=1), |wotany1 |=2n+¢ and |we |=¢g—1. Bug
there are no elements in A(p) of dimension ¢ — 1. |  |= 2mp + 1 can occur
only if s + & = p > 3 and then | wy [= k¢ + ¢ — 2k and again, there are no
elements in this dimension in A(p}. Similarly, | u |= 2mp + 3 occurs only if
s+k=p—1>2 Then|w, |= kg+ ¢g— 2k — 1 and there are no elements in
this dimension in A{p). B

4.2. Proposition. If 1 < a < p—1 then the following sequence 15 exact

a PPy Pt

o AP) T Al T Al TS Al) -

{P°x means the endomorphism of left multiplication by P*°).

Proof: We assume p-odd. The Milnor representation of A(p), [6] , vields an
isomorphism A{p} ~ P ® Q. This is an isomorphism of left P modules where P
is the subalgebra of A{p} generated by P?". Thus, suffices to prove the exactness
of the sequence where P replacing A(p). For P one can use again the basis of
admissible monomials in the P'’s. Now, if @ < p and w € P is an admissible
monomial then P°w is {a multiple of) an admissible monomial. If w, # w, are
admissible monomials then P*w, # P°w, (uniess both are zero).It follows that
if u="2Xkw € A(p), k € Z/pZ, w,; admissible monomials P¢u =0 if and
only if P2w; = 0 for all 1 and suffices to prove taht P°w = 0 if and only if
w = PP~9¢ for an admissible monomial w. Now w = P™w, = kP*P™Puw, for
some admissible monomial wo, 0< m, 0<b<p Pw=0Iifandonlyif
a+b>pand thenw = Pr-e(k patt-rpiry ) B
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4.3. Corollary. Let K = K{(Z/pZ,2n + 1) and let wizn,y, = u €
€ PH?r e+t (K} w € Alp) {t, as in 1.0-(2)). If P>~ u =0 thenu = P*r+1y,
{a. as in 1.0-({}].

Proof: If r is even t, =ty = kpg—2k+1, |u|=tasin 4.1 and 0 =
Poru= Py implies P'w=0. w= PP lw; and u = PP lungige,, = PP +iu,.
frisecddt =t =kpg+g— 2k If0 = P*u = PP~y then for some
8, 1 <s<p-—-2 P 'u#0and PP 'u} = 0. The proof u = Plu,

is by induction on s. | P*7'u |= t as in 4.1 and P'{P*~*u) = O implies
P*{P*"*w) =0 (where u =wiy, 4, € A(p)). By 4.2 P*~tw = pPr-lu,. If
s=1, w=-P{P*"%uw) and u= P'(P? %w,)1,,,,. Otherwise one has for

somee #0, P H{w—ePP 'wylign,: =0, by induction u — PP Cwyiga,, =
= Plug and v = P*{uo + €, P77 " lwotznsq ). B

5. Review of homotopy theory of self maps

In this section we exiract some notations and statements from [12], needed
in our computations. Assume all spaces and maps are pointed. Consider
pairs X, Ty of spaces X with a self map Tx: X — X and “morphisms”
[V X, Tx — Y, Ty where f: X — Y and V;: X — PY = map{l,Y)
is 2 homotopy V;: f o Tx ~ Ty o f. Our main object here is to show that some
standard homotopy theoretic constructions extend to our “category”.

Now, given pairs E,T; , B,Tp , B,,Ts, , morphims fo, Vit E\Tg —
B,Tp ,}1,V;,:B,Tp — B,,T, and a homotopy &% ~ f, o f, (&:E —
LB, = map.(I,0;B,,*}}. We denote by (8} = «{¢,V;,,V;,) the class of
€oTg + PfioVy +V;, 0fo — LB, ofin m(map.{E, By), ).

For convenience assume that B, = K (G, m) where G is an elementary abelian
p-group. Then one has:

5.1. Proposition ((3.9) of [12]}). One can choose £ so that after replacing
Te,Ta,Tp, by their p’-th iteration af€) = 0. If € is altered by w: E — QB,
and wo Ty ~ QTp, ow then afw + £} = a(f).

Similarly, suppose in addition that one is given pairs L, T, , K, Tx and maps

U,VU:L,TL — E,TE ) T,V.,:K,TK — B,TB N h'Vh:L,TL -_— K,TK
and a homotopy W: f; 0 ¢ ~ 7 6 h, to obtain a diagram:

LT, —— BT

|= w [

(D.3) K, Ty I B,Tg Lx~fiofy

|

BG!TBO
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One can define an element a(W)} = o{W,V,,V,, V., V, }inm, {map.{L, B},
fooooT, ) as the class of PfyoV, 4V, co+PTy oW —V, oh—ProV, —WoT, . f B
is an H-space one can translate o{W) to m, {map.{L, B}, *) and then it coincides
with « of the first type {replacing the square by maps L — E x K — B).
In this case 5.1 vields:

5.2. Proposition. W can be chosen so that after replacing Ty, Tk, Te, Tp
by their p-th steration o(W) =0. IfW is altered by w: L — 1B and wo T} ~
~ Ty ow then a{w « W) = a(W) {where ¥ denote the pointwise multiplication
of paths in the function space).

The classes a(€), a{W) represent obstructions to the following problems:

Given f,,V;,: B,Ts — By, Ts, one naturally obtains a self map Tph of the
homotopy fiber F;, of f, so that the “inclusion of the fiber map” ;,: F;, — B
strictly commutes with the self maps: j;, o Tp, = Tp o jy,. Il &% ~ f o
ofo, fo.Vi,tE, Tz — B,Ts, then £ induces 2 lifting fi: E — V; of fo:7,, 0
ofe = fo - alf) = aff,V,,,V;,) is the obstruction to lift V,, to a homotopy
sz:fEOTE NTV;‘ o fi. -

Similarly, fo,Vy, induces a self map T¢, on the mapping cone Cy, of f; so
that ¢, : B — C;, strictly commutes with the self maps: ¢,, 0 Tp = TCJo o
oty,. £i% ~ f; o fy induces a map f,_ ¢;, —+ B, extending fi: fz o1y =
= fi-a(l) = o, V;,, Vh) is also the obstruction to extend V,, to a homotopy
V :f, o To, ~Tg, o fz Analogously, Tk ,T%,75,V;,, V. in D3 induce a self
map Ty (10.r) on the the homotopy pull back U{fs,r} of fo and 7. W induces
a lifting Ay : L — U{(fo,7} of

L

(o xhloA:L — Ex K.

a(W) = alW,V,,V,,,V,.,V,) is the obstruction to lift {¥, x ¥,) ¢ A to 2 ho-
motopy Vi, thw 0Ty ~ Ty(s,.ry © hw . Now, if in D3 o,7,W, { are given, they
induce 2 map p: C, — B,.

5.3. Proposition. Suppose in (D3} B, B, are K{G,n) and K{(Gy,m} re-
spectively where G,G, are elementary abelian p-groups. [f W .f, 00 ~ 710
oh, €% ~ f, o f, are chosen so that a(W)} =0, «(f} = 0 then the natural
map p admits a homoatopy V,:po T, ~Tg, op.

Proof: Writing down the formulas for the various maps involved one gets
(z,tcLxI, ye K):

[ to() [2 [ Tuls), 2t
plat) = {Pfl oWz -1 Lo®07 {Vh(a:} (2t — 1]

ely) = fior(y) Te, (v} = Tx (v)
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LoTy{x) {4
polc,(2,4) =< PfioWoTy(x) [4t - 1]
P(fy07) 0 Vi(z) [2¢ — 1]
#Te, (y) = fro7 o Ti(y)
LTg,0foo(z)|2i
TBGOp(x,t):{ (x) [22]
PTg, 0 PfyoW(z)[2t - 1]
Tg, ¢ p{y) = Tp, o f1o7(y)
The obstruction to extend the homotopy
PfioVe + Vg ori floToTi ~ T, 0 f1 07 to a homotopy poTeo, ~Tp,0p
is the class in my(map.(L, Bg), *) of the loop
7y=focoTp + PfioWoT, + PfioProVy+
+PhoVioht+Vyoroh~PTg,oPfioW - LTg, 0loc

which can be illustrated as follows as a loop in map.(L, Bg):

Tm ofootoh
fiereTuinh prov¥ op fioTworok Vrereh "" .

fioseholy

{filoafi®)

ATs o fro fame

/7

Thus [y} = —{€o o o Tu)gni( fi#)al{W) + n1(c* (o) where

f1.:m99.(L, B) —» map.(L, Bo)
o map(E, By) — map.{L, By)

are the left and right compositions with f; and ¢ respectively.
(oo o T}y mi{map,(L, By), fio fooo oTr) — mi(map.{L, By),*)

15 the isomorphism induced by the path foooTy. Hence, a{W) =0, oa(f)=20
implies [y] = 0. &
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8, Derivations in the co-bar construction

Let A be a graded connected primitively generated Hopf algebra of finite
type over Z/pZ p-odd. Then the elements of A are sums of monomials in the
primitives. One has a mod p — 1 algebraic weight function w defined on ho-
mogeneous polynomials: w{a} € Z/{p — 1)Z, satisfying: w(l) = 0, W{PA} =

k timea
—_— k
=1, w{lm{PA®- .- @ PA £, A}} = k {A - the multiplication in A). Thus,
together with the grading this gives a bigrading of A4, A,,, s € Z/(p -
—1¥Z,te Z%.

r times

' e
Let B = 57 , B, be the reduced cobar construction on A:B, = A®---@ 4

with a bigrading B, = @Prm,=t Am, @ - ® An,,. Then w extends to B,
o >0
by w{e, ® ---@a,) = 3 wla} for monomials a; in A. Let d,:8B, — B

be the derivation d.{a, ® ---®a,} = 3 [_ (-1}'"'a; @ - @ Fa, ® -+ @;;i
{(EZ -the reduced coproduct in A). Then d, respects the weight function thus
extending it to the homology of 4., namely to Ext}"(Z/pZ,Z/pZ). The lat-
ter is a free algebra generated by Ext), (Z/pZ,Z/pZ) and by some elements in
@, Ext2***(Z/pZ,Z/pZ). All generators in Ext’’(Z/pZ, Z/pZ) are of weight
one. (Ext,™{Z/pZ, Z/pZ) ~ PA,, and the generators in Ext’**?(Z/pZ, Z/pZ)
are represented by Y 77 1(*)v® ® v"~*, v € PA,,). Thus we have:

a:lp "]

6.1. Lemma. Ext’"(Z/pZ,2Z/pZ) contains no elements of weight 1 for
2<s<pandfors=2 r#0 {(mod 2p).

6.2, Corollary. Ifu€ kerd, CB,,w{u) =1, 2<r<porifr=2and
| © |# 2 {mod 2p) then v € Imd,_; {] | - the total degree s+ r in Ext™" }.

If A above is a non stable module over Z/pZ [P:]/(P*)? C Alp) (i.e., Plu=
=u? foru € A,, P'A, =0 and P' acts as a derivationon a-b and a @
®b. P'{PA) C PA). Then PP = “{P*)* (i < p) respects the modp—1

- ~ T times -
algebraic weight and ' commuted with d, in A®-- - @ A= B, .

6.3. Proposition. Let A be a primstively generated graded connected Hopf
algebra and a module over Z/pZ [P*|/{P')?. Suppose PA, =0 form < 2n+1

4 times

—_—
and let x € PAyn,y:. Then there exist elementsu, CAQ - @ A ofmodp—1

algebraie weight 1, 1< s < p, so that:

p times

p—— N—,
1) uw,—z®@zIQ@---Qz 1) Poetru, =d,_yu,_, fors>1.
3
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&—1 times

f_—""—:
{u,.y € A® - @ A considered as an element in B, |} a,,, as in 1.0 {{).

For any choice of u, of weight I {modp— 1) satisfying {:} and {ii} one has
u, =€,z Pz P2z . PP 'z {mod ImPl) g, = (—2)°~+

Proof: Suppose by induction u,_, of weight one were found for 0 < r < rg
so that, ¥, = 2® - @x and P uy_,y, = dy_,u,,, |u, |= odd. Further
assurmne.

p—25—1 times

r—— N N
(for r=2s) wp_n, ={P"" ' {Plz-2)]" 2Q2® - -Bz+ , w Quj

pr—2s—1 timesx

;e _
wherew, € A®@--- @4, |w|>02r+1){p—2s—1)}
p—2s—2 times

(forr=2s+1) wp_ygy,_; =[PP Pz -2} {P2-2)®R Z®- - @z +
+Zv§®v;

p—2a—2 times

. p————e, .
where v, € A®--@ A4, |v|>{(2n+1}{p—2s~2).

Is'th-p!ace
fro =0, Plu, =Plz® - Qz)=3",20 - ®P'z® - @z =
Iith-p!ace
=d,_, 20" {1+ - {)z2@-. - ®Plz-z® - @z and u,_, exists having the
desired form . If ry = 25, +1, >0, Plu, ,,, = 2.,- 145 2., imply

dp—Zog-lpp“lup 235g—1 = 0. As w(Pp—l Uy 2,0...1) =1 p>p— 239—1}
> 1, PPy, 5, |= odd, hence¢2 {mod 2p}, by 6.2 PP uy_ 5, €
€ Imd, 2,,_2-

. p—22—2 timea

Now Prlu, o, s = [PPMPlz - )|t @ @z -@z+
+ 3.0 ®, | 3 > (2n+ 1){p— 25 — 2} . One can easily argue that
if PP lu,_a,o1 = dp_y,,_2¥p_24,—2, then u,_,,,_, has the desired lead-
ing term {modkerd, ,,, o). Ifro = 28,0 < 5o < 222, PP lu,_,, 4y =

Ty 24, Upo2s, BNd dp_zy  Plup 2., =0 Asp>p—25, > 1, | Plu, ,,, |=
= odd # 2 {mod 2p}, again Pluy ., € Im dp_s,,-1- Plup_a, =
p—2+—1 times
rm—— — — —
=[pr=i(Piz-z)'Plz@ 2@ - @z + 3, W @W | @ |> (p—2s—1){2rn+1}.
Again one can see that Plu,_,,, = dy_ 2, 1%y 25011 ¥p_2.,_1 Das the de-
sired leading term (mod Im d,_,,,- 1}

Now, one can see by induction that u,_, are uniquely determired
med (kerd,_, = Im d,_,_;}+ Im P< ** Thus u, is determined up to image
Pes = Plandu, = (PP (Plzz)f~Fx=¢g,xP'z... PP 'z mod Im P'. W
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7. Proof of the main theorem, part (1)

Fix p odd and n # —1 {mod p). We foilow the notations of 2.0 (i} -(iv} and
recall the observation that H*(B,,B,_;) ~ B, A where A= H*(K)}, B A~

r times
prem—————— - &, i
~ZA® ---®@LA( LA = H*'(EK)} ). The composition B,,,,B, — LB, d
LB, ,B,_; induces a morphism H*(B,,B,_,) — H* (B4, B,) corresponding
to the derivation in the cobar construction

r binzes r+t

- —

d:ARAQ@ @A A® --®A, d{e,®@ -®a )=

=Y (V@ ®® Qs

i=1

where g*: A — A ® A is the reduced coproduct {note that A ~ LA with a
shift of dimensions}.

Now, starting of with {D2), one observes that all maps (except possibly &,}
commute with the self maps T induced by the A-th power maps in K {and
consequently in LK, B,,{B;, B;.,}} and by those in FE;, K;. One can see that
f&x~ PP ok, Vi tkooTg, ~Ti, oko, Vpsus: PP 0Ty, ~Tpy, 0 PP}
are chosen to be the stable homotopies then a(4,V,,,Vs,-:) = 0.

By 5.2, 5.3 one can choose W:ky o4, ~ 1, 0 j, so that 4,: L8, , — BK;
will satisfy 4, o Tvp, , ~ Tpk, 0 i, (where the T’s may have to be replaced
by their p'-th iteration).

The same observation will hold in all the following inductive steps: If {D2),
is given so that all maps {with the possible exception of #,) commute up to
homotopy with the self maps T then one chooses the stable homotopies & x ~
~ Porrtiok, ., ka—r:kﬂ—?OTEy-r ~ TKp—r-rl 0kp_ry Vps, gt Pormrtio
Tk, sx ~ Tpx,. .y, O P "t and a suitable W:k,_, o @, ~ u, o3 so that
i, induced by £ and W will satisfy 4, o Ts,_, ~ Tsk,_,,, © % . Thus if one
assumes inductively {induction on p—r) that (D2}, exists forallp2r>r > 3
so that all maps commute up to homotopy with the self maps T one has to
prove the following proposition in order to continue the inductive process:

7.1. Proposition. &,, o X1, ,_, ~ *.
If 7.1 is proved then #,, may be factored as

Sjro—l (“ro—l)#

EBrg-—l’zqu—Z

EBro—l BKp—rD-i-z

and {u,,_}4 commutes with the T’s {5.1). The same holds for the adjoint
map Uy, - 1:Bro— lyBro-Z i Kp—ro-i-?-
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By induction [k,_,, o %, ] represents &,_, (P"1,,,.) and consequently
$p—ro+1(P* 120y 2) is represented by [(&,, )4 € [Bro—1,K,_ . +2], in particular
(#,,)4 factors as

Gry-1 kpo vyt

B p=ro+1

rg~1 p=ro+2 - uro—l.

is the lifting of 4, o7, ,_; induced by Lu,, o0&, +Wos,°_1 ¥~k o 08, 01, 4
where £, is the standard homotopy £;: % ~ 7, o, . One can easily see that
a(€) = 0 and W was chosen to have «(W) = 0, hence, by a dual of 5.3
thy,-1 commutes with the self maps. Applying 7.1 one obtains (D2),,_, as
required. This inductive process yields diagrams (D2), for 2 < r < p. If one
denotes the adjoint of #,: LB, — BK, by u,: B, — K, {and as all maps are
pointed u,: H,, B, — K, where B, = #) then {u,] represents ®,_, (P"1,,, ).
In this way one obtains a sequence of maps {u,]| € [B,,B,_,; Ky_,4.] =
= H3ret2rt-2 (B B, ) satisfying:

(i) Up = tan42 @ @02,

(ii) Pos—r+1(u,] = [u,-, 0 Bi,_, 0 ).

rotimes

"'__"""A'""'_:' - —
One shifts dimensions and considers Z™"4, € A®---® 4 = B (4 = H {K))

then (i), (i) are shifted to satisfy the hypothesis of 6.3 (u, of mod p-1 algebraic
weight 1 is equivalent to the property that %, commutes with the self maps).
Hence, Z7'u; = €p00n11 - Pliznyy ... PP 05,4, (mod Im P!). AsIm Pt is
part of the indeterminancy of ®,_, part (1) of the main theorem follows.

Proof of 7.1: First consider the composition:

Eiy ., -
B, — EB,OHI s BK, . 42 (1o > 3).

Now ~ y
H*(EB,)~ H(EB,,LB,;) = EQH(K] =LA

and the image of H* (%4, ,,_,) is B*PA. Now, (4,,)4:B,,-1 — K,_,, . Tep-
resents ®,_, . (P 124 42), hence, ¥ ~ P*-r0fi, and Por-vo(d,, 081, ,, ;] =
=0, {&,0X%i,,_.]c Z®PA Let u = B°2[d,, o Biip-1] € PA then
v has weight 1 (modp — 1) and its dimension is 2np + 1 + ¢,_,,. By 4.3

-1

= P-roviy, v € PA. Now the map H'(BK) = H* (B, )} — H*(B,) s,
H*(K) induces a surjection PH*(BK) —» PH*(K) and £?v belongs to
Im H*(%B,) — H'(LB,), say ZI?v = H*(t;,,)#. Thus one can alter
Wik, .\, 08, ~u,, 04, by o € [EB,,,K,_,, 1] (as ¥ is of weight 1 it com-
mutes with the self maps, by 5.2 a{{—v} + W) = 0) and %,, is thus aitered to
obtain %, 0 4, ., o, ~ *.

Suppose inductively that %, , 02, ,,., ~ * forsomer, 1< r <r,—2. Then

the composition ©B, — £B,,, — LB, _, - Bk,_,,+2 is null homotopic.
We also assume that all maps commute with the self maps 7.
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By 5.1 {and by replacing the self maps by their p* iterations, if necessary) u,, ©

o%4, 4., extends toamap LB, ,,,E5, — BK,..,,+2 which homotopically
commutes with the self maps. The X power map induces a multiplication by A
on the fundamental class of BK,_,, + 2, the fact that u} commutes with the self
maps is equivalent to the fact that [u!] € H*{ZB,,,,ZB,)} is a A characteristic
vector of H*(Tep,,,.x5,), hence it is a class of modp —1 algebraic weight

6' 3
1. r < ro — 2 implies that the compesition B,;,, B, RIALN £B,,, — B,

is null homotopic, hence, @ 0 B, 4s 08,41 ~ &, 0 Ttyy,po1 0641 ~ %
d, 1[E7'4'] = 0 in the cobar construction. Asp~12r+12>2and
(¢4, |=2np+ 2+, ,,12 #2 mod 2p by 6.2 74, € Im &,, 4 ~
Nﬁ?r 022];_ 026r+1)
6,42 Ej, a,
EB,+1,EB, LEzBr 3223,,823‘,“1 _>BKp—rg+2
l |

a
hence, #,, 0 Bi,p1,0p-1 ~ @, 0Bfyy ~ @, 0B?5, 0 B8y 0B, ~ *. By
induction 4, 04, .1 ~ #forallr <r,=2, &,,0Li 2,1~ 4,050, 2 ~
~ % and 7.1 follows.

8. The main theorem (part (2)) and applications

The proof of the main theorem (2} (see 8.3) is a consequence of some appli-
cations of the main theorem part {1}.

8.1. Proposition. Let A be a primitive root of unity modp. Let X,T
be a Q — X power space, i.e. T:X — X induces mulliplication by A on
the guotient module QH'{X) of algebra generators. If for some n, n F —1
mod p, QHY{X)=0forali#2n+1 modp—1landifzc H* (X} is
an tndecomposable ) characteristic vector of H*(T) then @, (P z2011) =
= e,z Plz.. PPz 4+ Im P+ @, W: where W, C H' (X} is the A
eigenspace, 1 < { < p — 1. {One may assume that H™ (T} has a diagonal
form for every m}.

Proof: ©T induces a mod p splitting of X, TX =, /2 Y, H'(Y) =
= IW.. (Y, is the mapping telescope of [].,. (ET — MY, Pmz is ob-
viously in the domain of ®,_,. A representative of ®, ,{P"z) could be

z fuy}) kg
obtained by X —» K(Z/pZ,2n + 1) —— E,., —> K,, hence, by the
i kpoy
main theorem (1) €,z P'z... PP 'z € &, (P z). Let : X — E,y —
k”’ + el
0, K, be any other representative of & . {P"z}, hence the composition

f‘ hpo-rohp_y

X S E,_.—— K(Z/pZ,2np+ 1} is P"z. Denote f = (u;}4 © x then
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fu —f4:5X — BE,_, satisfies B(hyo---oh,_,)o(fy —fs) ~ v and fy — f4
lifts to XX ——r BE’,,_l. (E’,_ ,~the homotopy fiber of A, o...h,_). Now one
can easily see that Mpnps14:(Fpey) =0fori=0{p—-1),0<i<t,., — 1. On
the other hand W, C (B, H*»*+{#r=1)¢({X} {as W, is spanned by monomials in
the 1ndecornposa.ble A- elgenvectors of length = 1 mod p—1}. It follows that the
map 7,_,: QK,_, — E,_, {the lifting of j,_, in {D1)) induces a surjection

Yy, K,:] —-p[Yl,BEp 1] Hence, ¥; B opx It BE,_, BK,
factors as Y — K,_, I, BK,,and [k, o f]—[k,0f] = P (5~ ‘Wit @, W
Hence [kpof]:epz-P"z...P"_lz+Im P1+@‘.#1 w. m

8.2. Example. Let X = B{2n+1) be the 2n connected Wilson’s irreducible
factor of the 2n connected element of the {I-spectrum of BP. Ifn Z -1 mod p
then for the fundamental class ¢ € H?"**(X) one has e, o - Plz... PP 'z ¢
¢Im P* + @, ., W. hence, by 81 0¢ &, _,{Pz).

8.3. Proof of the main theorem {part(2}}: 0 € ®,_, P 134, will contradict
8.2. 1

8.4. Corollary. Let X, T\n,z be as in 81. O € €&, (P 23,,.) [in
particular tf Prz,, ,, =0) thenz-Plx.. . PP 'zeIm P'.

Proof: By 8.1, 0€ &,.,(P*z) = g,zP'z... P 'z +Im P+ P, , Wi =
=gpxPlz. PPzt PWLHD, W AsaPlx. PPz e W, PIW, C W,
and W, NP, ,, W.: =0one has zP'z... PP iz € P'W,. W

8.5. Corollary. There is no Q-) power space X having H*(X) =
=Alz,Plz,..., PP 'z),dimX =2n+ 1, nZ —1 {meod p).

Proof: P*z = 0 by hypothesis but there are no elements w with Plw =
=z Plz...PP 'z to satisfy the conclusions of 84 B

8.5.1. Remark. If n is large enough {n > }(p° —p—1){p—1)) then there is no

space {not necessarily a power space} with H* (X} = alz, Pt z, P?xz,..., PP 1z}

This follows from the fact that A= (X} =0for m # 2rn + 1 {mod p— 1) in the

relevant range {as in the proof of 8.1}, hence, Im P! is the total indeterminancy.

In [3] a modp {p > 5) H-space is constructed with H*{X} = A{z, P'=z,...
L PPEY L E|l=2p 4 1

8.6. Corollary. There ts no stable map f: X — 1 5% §20" +1 yith Prg €
€Im H*(f}.

Proof: As®,_, isstable0 € &,_ 1( ) where 0 £ u € H® +* (0% £ §2°'+1),
A map f with H*(f)u = PPz will yield {by 84} z- Plz.. PP 'z € Im P!
which is impossible. B
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