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DYNAMICS SEMI-CONJUGATED TO A SUBSHIFT FOR

SOME POLYNOMIAL MAPPINGS IN C2

Gabriel Vigny

Abstract
We study the dynamics near infinity of polynomial mappings f

in C2. We assume that f has indeterminacy points and is non
constant on the line at infinity L∞. If L∞ is f -attracting, we
decompose the Green current along itineraries defined by the in-
determinacy points and their preimages. The symbolic dynamics
that arises is a subshift on an infinite alphabet.

1. Introduction

We are interested in the dynamics of polynomial mappings f in C2

whose meromorphic extensions to P2 admit indeterminacy points and for
which the line at infinity (which we denote by L∞) is f -attracting (that
is: there exists C > 1 such that for p ∈ C2 with ‖p‖ large enough, one
has ‖f(p)‖ ≥ C‖p‖). In particular, given any large ball B in C2, these
maps are polynomial-like in the sense of [DS03] from f−1(B) to B. The
dynamics is studied there: there exists an invariant probability measure
which is K-mixing and of maximal entropy. Our goal is to study the
dynamics near infinity, especially the structure of the Green current,
which is a positive closed current of bidegree (1, 1) invariant under the
action of f∗.

In [DDS05], the authors consider the case where f∞, the restriction
of f to L∞, is constant and they decompose the Green current into
pieces associated to an itinerary defined by indeterminacy points. On
the basin of attraction of the indeterminacy set, the itinerary map semi-
conjugates f to a shift.

Another case which has been studied is when f admits a holomorphic
extension to P2: in [BJ00], the authors showed the Green current admits
a local laminar decomposition consisting of the stable manifolds of f at
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the points of the Julia set of f∞. Applying one dimensional theory, one
also obtains in this case a dynamics semi-conjugated to a shift.

We study here a mixed situation. We assume that f admits indeter-
minacy points on L∞ and that f∞ is not a constant function. In order
to describe clearly the new phenomena happening here, we consider the
case where f∞ is hyperbolic. The method we use allows to study more
general cases. We will complete our study by giving several examples. In
the hyperbolic case, we show that the Green current decomposes along
some itineraries defined by the indeterminacy points and their preim-
ages. Surprisingly, the local stable manifolds associated to the points of
the Julia set of f∞ are not charged by the Green current. Furthermore,
the symbolic dynamics we obtain is a subshift (a Markov chain), which
is new for polynomial mappings.

The main tools we use are horizontal-like maps and a theorem of con-
vergence of currents proved in [Duj04] and [DDS05]. Roughly speaking,
such applications are contracting in the vertical direction and expanding
in the horizontal one in some bidisk. For the reader’s convenience, we
give the basic properties of these objects.

Next, we define and study the basic properties of the family G of
maps we consider. We give a simple sufficient condition for a map f
to be in G and we prove the algebraic stability. Then, by a theorem
of Sibony [Sib99], one can associate to f a natural invariant current
(Green current). We give an easily computable formula for the trace
of the Green current at infinity. This trace is a probability measure
which is a combination of Dirac masses at the indeterminacy points and
their preimages. Under some additional hypothesis, we also compute the
topological degree.

We then study the decomposition of the Green current on a neigh-
borhood of infinity under the hypotheses that the indeterminacy set is
located in the Fatou set of f∞, with no indeterminacy point being peri-
odic for f∞ and that f∞ is hyperbolic. This set of maps contains an open
subset of G. The decomposition of the Green current semi-conjugates f
to a subshift on an infinite alphabet. A classic object in this setting is
the escape rate which measures the asymptotic speed at which a point
goes to infinity (see [DS04] and [FJ05] for some interesting examples
and results on this topic). Under some additional hypothesis, we show
that the range of the escape rate is a full interval which is new for polyno-
mial maps and we compute a mean escape rate. We will explain briefly
how to obtain a weaker decomposition of the Green current in a more
general case. Finally, we study examples, in particular the case where
the indeterminacy points are located in the exceptionnal set of f∞, in
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this case the support of the Green current is strictly contained in the
Julia set of f .

2. Polynomial maps with dynamics at infinity

2.1. Horizontal-like maps.

We recall here the facts we use on horizontal-like maps. Proofs and
details can be found in [Duj04] and [DDS05].

Let D (resp. Dr) be the unit disk (resp. the disk of radius r centered
at 0) in C. Let ∆ be the unit bidisk in C2, we denote its vertical boundary
by ∂v∆, and its horizontal boundary by ∂h∆. Namely:

∂v∆ = {(z, w) ∈ C
2, |z| = 1, |w| < 1} and

∂h∆ = {(z, w) ∈ C
2, |z| < 1, |w| = 1}.

We have the following definitions:

Definition 2.1. Let ∆i ⊂ Mi be an open subset biholomorphic to ∆ in
the complex surface Mi for i = 1, 2. Let f be a dominating meromor-
phic map defined in some neighborhood of ∆1 with values in M2. The
triple (f, ∆1, ∆2) defines a horizontal-like map if:

• f has no indeterminacy points in ∂v∆1 and f(∂v∆1) ∩ ∆2 = ∅;
• f(∆1) ∩ ∂∆2 ⊂ ∂v∆2;

• f(∆1) ∩ ∆2 6= ∅.
Definition 2.2. A positive closed (1, 1)-current T in ∆ is vertical if:

SuppT ⊂ D1−ε × D for some ε > 0.

Similarly, we can define horizontal currents.
We can define the (horizontal) slice measures mw0 of a vertical positive

closed (1, 1)-current T by T ∧ [w = w0]. These measures have the same
mass, which we call the slice mass of T . The current T is zero if and
only if its slice mass is zero. The main fact is that we can define the
pull-back of such a current by a horizontal-like map, and we have the
following:

Let (f, ∆1, ∆2) be a horizontal-like map then there exists a positive
integer d ≥ 1 such that for every vertical positive closed current T in ∆2

of slice mass 1, 1
d
f∗(T ) is a vertical positive closed current in ∆1 of slice

mass 1.

We call this integer the degree of f , it can be computed as the number
of intersections of the preimage of a vertical line with a horizontal line
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(with multiplicity). The following result is our main tool to obtain the
convergence in Theorem 3.5:

Theorem 2.3 ([DDS05]). Let {(fi, ∆i, ∆i+1)}i≥1 be a sequence of hor-
izontal-like maps of degree di such that (fi)

−1(∆i+1) ⊂ D1−ε × D ⊂ ∆i

for a fixed ε > 0. Assume that K =
⋂

n≥1 f−1
1 . . . f−1

n (∆n+1) has
zero Lebesgue measure. For each n, let Tn be a vertical positive closed
(1, 1)-current of slice mass 1 in ∆n.

Then, the sequence of iterated pull-back
(

1
d1

f∗
1 . . . 1

dn
f∗

nTn+1

)

n
con-

verges to a vertical positive closed current τ of slice mass 1 in ∆1 which
is independent of (Tn).

2.2. The class G.

We say that the line L∞ is attractive for a polynomial mapping f of C2

if there are constants C > 1 and M large enough such that for ‖p‖ ≥ M ,
we have ‖f(p)‖ ≥ C‖p‖. We can consider the meromorphic extension
of f to P

2, which can have indeterminacy points, we still denote by f
that extension and by I(f) the indeterminacy set. Let f∞ be the unique
map extending f |L∞\I(f). The case where f∞ is constant was studied
in [DDS05], so we will consider the following set of mappings G:

Definition 2.4. Let G the set of mappings f satisfying the following
properties:

• The line L∞ is attractive.

• The meromorphic extension of f to P2 admits indeterminacy
points.

• The map f∞ is not constant.

Let f = (f1, f2) of algebraic degree D be in G. We denote by f+
1

and f+
2 the homogeneous parts of maximal degree. After a linear change

of coordinates, we can assume deg f+
1 = D and deg f+

2 = D′ ≤ D.
The meromorphic extension of f to P2 is given by [T Df1(Z/T, W/T ) :
T Df2(Z/T, W/T ) : T D] and the restriction of f to L∞ = (T = 0) is

f∞[Z : W ] = [f+
1 (Z, W ) : 0D−D′

f+
2 (Z, W )]. Thus, in order to have f∞

not constant, we need D = D′ and f+
1 not proportional to f+

2 (otherwise,
f sends L∞ to [1 : 0 : 0] or [1 : λ : 0]).

The indeterminacy set I(f) of f is the common zeros of f+
1 and f+

2 :
if the line D of equation ajz − bjw = 0 satisfies f+

1 (D) = {0} and

f+
2 (D) = {0} then [bj : aj : 0] is in I(f).
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One deduces from above that all the mappings of G can be written
as:

f(z, w) =





∏

j≤m

(ajz − bjw)αj P1(z, w) + Q1(z, w),

∏

j≤m

(ajz − bjw)αj P2(z, w) + Q2(z, w)



 ,

(1)

where the aj and bj are complex numbers satisfying (aj , bj) 6= (0, 0),
m and the αj are positive integers, P1 and P2 are homogeneous polyno-
mials of degree d′ ≥ 1 with no common factor and the Qj are polynomi-
als of degree strictly smaller than the degree of f . We denote by d the
sum

∑

j≤m αj , so that f has degree d + d′ = D.

So we have that f∞([Z : W ]) = [P1(Z, W ) : P2(Z, W )]. We define the
multiplicity of an indeterminacy point I as the intersection multiplicity
at I of L∞ and f−1(L) where L is a generic line. The indeterminacy
points of f are the Ij = [bj : aj : 0] with multiplicity αj . We assume of
course that the (aj , bj) are not proportional.

The following proposition shows that we can find f with any given
set of indeterminacy points with multiplicity and any given restriction
at infinity. Furthermore, it shows that for D ≥ 3, G correponds to a
Zariski open set of the space of parameters of (1).

Proposition 2.5. Let f = (f1, f2) be as in (1). Assume that the poly-
nomial Φ = f1P2 − f2P1 has degree ≥ 2 + d′. If for all j, ajz − bjw does
not divide the homogeneous part of maximal degree of Φ, then L∞ is
f -attracting.

Proof: Let f be as above and N be a small neighborhood of infinity.
Observe that for any neighboorhood V of I(f), there exists a constant C
such that if p = (z, w) ∈ N\V we have C‖p‖D ≤ ‖f(p)‖. So we just have
to prove the estimate on V . Since P1 and P2 have no common factor,
there is λ > 0 such that max(|P1(z, w)|, |P2(z, w)|) ≤ λ‖(z, w)‖d′

on N .
The hypothesis implies that |Φ(z, w)| & ‖(z, w)‖degΦ near I(f), hence:

2‖f(z, w)‖ ≥ |Φ(z, w)|
max(|P1(z, w)|, |P2(z, w)|) & ‖(z, w)‖2.

The proposition follows.

Observe that for a generic map g ∈ G, we have deg Φ = 2d′ + d − 1.
The criterion is not optimal, but it is generic for D ≥ 3 and easy to
check. If D = 2, we obtain in the same way that ‖f(z, w)‖ & ‖(z, w)‖,
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so we may have to multiply f satisfying the above criterion by a large
enough constant in order to have that L∞ is attractive.

Recall that a meromorphic mapping f : P
2 → P

2 is said to be alge-
braically stable if no algebraic curve is sent to an indeterminacy point
after some iterations, equivalently, if f is of algebraic degree D then
fn has degree Dn for all n ≥ 1 . It is clear that the mappings of G are
algebraically stable because no algebraic curve can be sent on an inde-
terminacy point. So by [Sib99], we can define the Green current for a
map f in G (see the discussion before Proposition 2.8 for details).

We use the notation of (1) in the following proposition.

Proposition 2.6. Let f and g be in G then f ◦ g ∈ G. More precisely, if
f = (PQ1+R1, PQ2+R2) has degree D and g = (P ′Q′

1+R′
1, P

′Q′
2+R′

2)
has degree D′ then f ◦ g = (P ′′Q′′

1 + R′′
1 , P ′′Q′′

2 + R′′
2 ) where:

P ′′ = (P ′)DP (Q′
1, Q

′
2), Q′′

1 = Q1(Q
′
1, Q

′
2), and Q′′

2 = Q2(Q
′
1, Q

′
2).

In particular, f ◦ g has degree D + D′ and for n ∈ N∗ we have (f∞)n =
(fn)∞ .

Proof: With the above notations, the homogeneous part of maximal de-
gree of the components of f ◦ g are equal to:

P (P ′Q′
1, P

′Q′
2)Q1(P

′Q′
1, P

′Q′
2) = (P ′)DP (Q′

1, Q
′
2)Q1(Q

′
1, Q

′
2)

and

P (P ′Q′
1, P

′Q′
2)Q2(P

′Q′
1, P

′Q′
2) = (P ′)DP (Q′

1, Q
′
2)Q2(Q

′
1, Q

′
2).

We only have to check that Q1(Q
′
1, Q

′
2) and Q2(Q

′
1, Q

′
2) have no common

factor: if not, since two homogeneous polynomials have no common
factor if and only if they have no common non trivial zero and since Q1

and Q2 have no common factor, we would have that Q′
1 and Q′

2 have a
non trivial common zero.

2.3. Multiplicity of the indeterminacy points, trace of the Green
current at infinity.

Let E denote the set
⋃

n≥0 f−n(I(f)) =
⋃

n≥0 I(fn). For p ∈ E,
we denote by λp,n the real number equal to the multiplicity at p of fn

as an indeterminacy point divided by Dn, that is: λp,n =
multp(fn)

Dn

(these numbers will appear in the symbolic dynamics of f). We have the
following lemma:
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Lemma 2.7. For all p ∈ E, (λp,n) is an increasing sequence bounded
by 1. Let λp be its limit. Then:

∑

p∈E

λp = 1.

Proof: Write fn = (PnQ1,n + R1,n, PnQ2,n + R2,n). Recall that I(fn) is
the intersection of L∞ with the zero set of Pn. By Proposition 2.6:

Pn+1 = (Pn)DP (Q1,n, Q2,n).

Hence, (λp,n) is increasing since (Pn)D is a factor of Pn+1.
Set dn = deg(Pn) and d′n = deg(Qi,n). We deduce from Proposi-

tion 2.6:

d′n = (d′)n and dn = Dn − (d′)n.

So,
∑

p∈E λp,n = dn

Dn → 1. This completes the proof.

Remarks.

1. In a way, the indeterminacy points of fn take asymptotically all
the available degree, so they carry the main part of the dynamics
near L∞ (cf. Proposition 2.8).

2. The sequence (λp,n)n can be strictly increasing as we will see in the
last example of Section 3.6. One can check that (λp,n)n is strictly
increasing after some rank if and only if p is preperiodic.

Recall that, on C2, for f algebraically stable of degree D, the se-
quence of positive functions

(

un = 1
Dn log+ ‖fn(z, w)‖

)

almost decreases
(i.e. (un + cn)n is decreasing for some sequence of constant (cn)n de-
creasing to zero) to the Green function u of f which is a potential of the
Green current T of f (ddcu = T ). Furthermore, the function ũ(z, w) =
u(z, w)− 1

2 log(|z|2+ |w|2 +1) is a bounded quasi-plurisubharmonic func-

tion on C2, thus it extends to P2, and this extension satisfies ddcũ =
T − ωFS where ωFS is the Fubini-Study form on P2 (see [Sib99]).

We will see in Proposition 2.8 that ũ|L∞
is not identically equal to −∞

so we can define the measure m∞ = T ∧ [L∞] which is the trace of the
Green current at infinity. Since the sequence of functions ũn(z, w) :=
un(z, w)− 1

2 log(|z|2 + |w|2 + 1) is almost decreasing, m∞ is the limit in
the sense of current of the sequence ((ddcũn(z, w) + ωFS) ∧ [L∞]). In
particular, we have m∞ = ddc(ũ|L∞

) + (ωFS)|L∞
. The next proposition

shows that m∞ is a combination of Dirac masses at the points of E, with
computable coefficients.
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Proposition 2.8. Let f be in G and ũ be as above. For p ∈ E, we
denote by [ap : bp : 0] its homogeneous coordinates. Then:

ũ([z : w : 0]) = log





∏

p∈E

|apw − bpz|λp



− 1

2
log(|z|2 + |w|2).

In particular, we have the formula:

m∞ =
∑

p∈E

λpδp

where δp is the Dirac mass at p.

Proof: With the above notations, we have that in C2:

ũn(z, w) =
1

Dn
log+ ‖(PnQ1,n + R1,n)(z, w), (PnQ2,n + R2,n)(z, w)‖

− 1

2
log(|z|2 + |w|2 + 1).

So, first outside of E, and hence everywhere on L∞ by semi-continuity,
the extension is given by:

ũn([z : w : 0]) =
1

Dn
log ‖(PnQ1,n)(z, w), (PnQ2,n)(z, w)‖

− 1

2
log(|z|2 + |w|2).

By definition of the λp,n, there is a constant Cn depending on the choice
of the coordinates of the elements of E such that:

ũn([z : w : 0]) =
∑

p∈E

λp,n log |apw − bpz|

+
1

Dn
log ‖fn

∞[z : w]‖ + Cn − 1

2
log(|z|2 + |w|2).

From one-dimensional theory, we know that 1
d′n log ‖(f∞)n[z : w]‖−

1
2 log(|z|2 + |w|2) converges to a continuous function on L∞ and
∑

p∈E λp,n log(|apw − bpz|) converges thanks to the previous lemma.

The last identity and the fact that d′ < D imply the first formula in
the proposition. The formula giving m∞ is then clear by the Poincaré
formula.

Remark. The previous proof can be applied to all the algebraically stable
polynomial maps of C2 with indeterminacy points on L∞.
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The computations in this section are very similar to those in [Dem05]:
the author iterates “mappings” in P1 of the form h = [Hp : Hq] where
H , p, and q are homogeneous polynomials in two variables. A measure µ
is introduced and the author proves that it depends continuously on the
coefficients of h. Considering h = [PQ1, PQ2], we see that here µ is m∞,
so we deduce that m∞ depends continuously on the coefficients of P , Q1

and Q2.

2.4. Topological degree.

Let N be a small enough neighborhood of L∞ and V be a neighbor-
hood of I(f), then there are constants C and C′ such that for p in N\V ,
we have:

C‖p‖D ≤ ‖f(p)‖ ≤ C′‖p‖D.

Let us assume here that the considered mapping satisfies in addition:
for all I ∈ I(f), there exist a number lI , a neighborhood V (I) of I, a
neighborhood V (f∞(I)) of f∞(I) and constants C1 and C2 such that for
all p ∈ V (I) with f(p) /∈ V (f∞(I)), we have:

(2) C1‖p‖lI ≤ ‖f(p)‖ ≤ C2‖p‖lI .

This condition is easy to check in practice. Under these assumptions, we
can compute the topological degree of f which is the mass of the pull-
back of any probability measure by f . The difference with the case with
no dynamics on L∞ is that we have to count the number of preimages
of a generic line by f∞. We have the following proposition:

Proposition 2.9. Let f ∈ G satisfying (2). Then the topological degree
of f is given by:

dt =
∑

I∈I(f)

lIαI + d′D.

In particular, we have dt > D.

Proof: Let L be a generic line, we consider the probability measure
[L∞]∧ [L] (which is the Dirac mass at the intersection of L and L∞). By
definition, its pull back by f is of mass dt. After some change of coordi-
nates, we can assume that the point [1 : 0 : 0] is not on L and f−1(L).
So we work in the coordinates (u, v) = (Z/W, T/W ) where a potential
of L∞ = (v = 0) is ϕ(u, v) = log |v|. We must compute:

∫

P2

f∗([L∞] ∧ [L]) =

∫

f−1(L)

ddc(ϕ ◦ f).

For each I in I(f), let BI be a bidisk in V (I) for the (u, v) coordinates,
and for each p in f−1

∞ (L∞ ∩L) let Bp be a bidisk around p. Since L is a
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generic line, we can assume that f−1
∞ (L∞ ∩ L) ∩ I(f) = ∅ and that all

those bidisks are disjoint. The previous integral becomes:

dt =
∑

I∈I(f)

∫

f−1(L)∩BI

ddc(ϕ ◦ f) +
∑

p∈f
−1
∞ (L∞∩L)

∫

f−1(L)∩Bp

ddc(ϕ ◦ f).

Observe that ϕ ◦ f − lI log |v| is a bounded pluriharmonic function on
BI\L∞ thanks to (2), so it defines in fact a pluriharmonic function on BI .
Hence, on these bidisks, ddc(ϕ ◦ f) is equal to lI times the current of
integration on L∞. Using the same argument for Bp, we deduce:

dt =
∑

I∈I(f)

∫

f−1(L)∩BI

lIddc(log |v|)+
∑

p∈f
−1
∞ (L∞∩L)

∫

f−1(L)∩Bp

Dddc(log |v|)

which is what we wanted since
∫

f−1(L)∩BI
ddc(log |v|) = αI is the inter-

section multiplicity at I of L∞ and f−1(L) and since there are d′ preim-
ages of L ∩ L∞ by f∞.

3. Structure of the Julia set and of the Green current
near infinity

Throughout this section we make the following assumptions:

• f∞ is uniformly hyperbolic (i.e. the forward orbit of each critical
point converges towards some attracting periodic orbit).

• I(f) ∩ J∞ = ∅.

• The indeterminacy points of f are not periodic uunder f∞.

After a unitary change of coordinates, we can also assume that [1 : 0 : 0]
is not in J∞ ∪E. Hence (u, v) = (Z/W, T/W ) is a coordinate system of
a neighborhood of L∞\[1 : 0 : 0] where L∞ = (v = 0).

We construct suitable boxes (polydisks) around the elements of E
such that f defines horizontal-like maps between these boxes.

After decomposing the Julia set into pieces near infinity, we construct
a subshift on EN. We then decompose the Green current along these
pieces by pulling-back a smooth vertical positive closed (1, 1)-form in
the boxes which gives the Green current in a neighborhood of infinity.
Observe that the set of maps we consider contains an open set in the
space of parameters.

Next, we give an application for the escape rate of f and we explain
how to obtain a weaker decomposition in the more general case where
some indeterminacy points are in J∞. Finally we explain our results
through examples.
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3.1. Construction of the boxes.

The purpose of this section is to prove the following proposition:

Proposition 3.1. For all p in E, there is a bidisk ∆p centered at p
such that f induces by restriction a horizontal-like map from ∆p to ∆q

for all q ∈ E if p ∈ I(f) and for q = f∞(p) if p is not an indeterminacy
point. We denote by fp,q this restriction.

The bidisks can be taken arbitrarily small. We can choose them so
that for all I ∈ I(f) and all q ∈ E − {I(f)} then ∆I ∩ ∆q = ∅, and for
all p ∈ E and all q, q′ ∈ f−1

∞ (p) then ∆q ∩ ∆q′ = ∅.

Since f∞ is uniformly hyperbolic, we can put a smooth conformal
metric g on L∞ such that ‖Df∞(z)‖g ≥ λ > 1 on J∞. Let us remark
that E is discrete in the Fatou set F∞ := L∞\J∞ since the only compo-
nents of F∞ are basins of attraction of periodic cycles and E = E ∪ J∞

(see [Mil99]). The idea is first to construct disks on L∞ which will be
thickened to get bidisks. So, we use the following lemma:

Lemma 3.2. There is a constant c > 0 such that for all p in E, there
exists a disk Dp for the metric g such that if p ∈ I(f) and q ∈ E then
distg(f∞(∂Dp), Dq) ≥ c and if p ∈ E\I(f) then distg(f∞(∂Dp), Df∞(p))≥
c. Furthermore, we can choose the radii of those disks to be bounded and
arbitrarily small.

Proof: Let U be an open neighborhood of J∞ in L∞ with smooth bound-
ary such that ‖Df∞(z)‖g ≥ ρ > 1 on U and f−1

∞ U ⊂ U . There is only a
finite number of elements of E in L∞\U . Modifying U if necessary, we
can assume that I(f) ∩ U = ∅ and ∂U ∩ E = ∅.

For I ∈ I(f) such that f∞(I) /∈ E, we consider DI a disk centered
at I on L∞ for the metric g with f∞(DI) far from the other points of E.
Restricting DI if necessary, we can assume that for all p in f−1

∞ {I} there
is a disk Dp centered in p on L∞ such that f∞(∂Dp)∩DI = ∅ (we use the
fact that f∞ is open). We iterate this construction with the preimages
of all the p till all of them are in U . Of course, we may have to shrink DI

at each step. We apply this process to all the elements of I(f) such that
f∞(I) /∈ E.

Since we assumed the elements of I(f) are not periodic for f∞, we
then have disks Dp for all the p in E\U such that f∞(∂Dp)∩Df∞(p) = ∅.
Let r be the smallest radius of all these disks. It can be chosen arbitrarily
small.

Next, by hyperbolicity, there is some ε0 > 0 such that f∞ is injective
on any disk Dg(z, ε0) for all z in f−1

∞ U , and is close to its differential.
Namely, for all ε ≤ ε0, there is a ρ′ > 1 such that we have Dg(f(z), ρ′ε) ⋐
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f∞(Dg(z, ε)) for z in f−1
∞ U . Then, for r small enough, we have some r′

such that for all p in E∩f−1
∞ U , the disk Dp = Dg(p, r′) satisfies f∞(∂Dp)∩

Df∞(p) = ∅. The existence of the constant c > 0 is then clear by

construction for p ∈ L∞\f−1
∞ (U) and by hyperbolicity for p ∈ E ∩

f−1
∞ (U).

Proof of Proposition 3.1: Recall that the line at infinity is f -attracting:
there is a constant C > 1 such that for M = (z, w) in C2 with ‖M‖ ≥ A,
we have ‖f(M)‖ ≥ C‖M‖ where ‖ ⋆ ‖ denotes the euclidean norm.
Furthermore:

‖M‖2 = |z|2 + |w|2 =
∣

∣

∣

u

v

∣

∣

∣

2

+

∣

∣

∣

∣

1

v

∣

∣

∣

∣

2

.

If p = (up, vp), define ∆p = Dp ×
{

|v| < ǫ√
1+|up|2

}

with ε small.

For M = (u, v) ∈ ∆p, we have that

(1 + ν)−1(|up|2 + 1)

∣

∣

∣

∣

1

v

∣

∣

∣

∣

2

≤ ‖M‖2 ≤ (1 + ν)(|up|2 + 1)

∣

∣

∣

∣

1

v

∣

∣

∣

∣

2

where ν > 0 depends only on the radius of Dp (since u is uniformly
bounded) and goes to zero with it. We take the radii of the Dp small
enough so that the square of the norm of an element in ∆p is close

to (|up|2 + 1)
∣

∣

1
v

∣

∣

2
.

We choose ε so that all the ∆p are in the domain where the infinity
is attracting. Restricting r′ which is the supremum of the radii of the
disks Dp if necessary, we can assume that f(∆p)∩∂∆q ⊂ ∂v∆q for all q if
p is an indeterminacy point and for q = f(p) otherwise. Now, using the
uniform continuity of f in the complement of some small neighborhood
of the indeterminacy set and the existence of c in Lemma 3.2, we can
choose ε so that f(∂v∆p)∩∆q = ∅ for all q ∈ E if p∈I(f) and for q=f(p)
otherwise. Finally, since the image of any small neighborhood of an
indeterminacy point by f contains the whole line at infinity, we have
f(∆p) ∩ ∆q 6= ∅. The last part of the proposition is clear for r′ small
enough (we use the hyperbolicity of f∞ once again here).

3.2. Construction of the subshift.

Now, we define the symbolic dynamics which will appear in the de-
composition of the Green current. First, we will need to know the degree
of the horizontal-like maps (fp,q). Recall that αi is the multiplicity of
the indeterminacy point Ii ∈ I(f). We take the notations of (1). The
following lemma is clear:
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Lemma 3.3. 1. If p is in E\I(f), then the degree of fp,q is the local
degree of f∞ at p,

2. if p = Ij is in I(f) and q 6= f∞(Ij), then the degree of fp,q is αj,

3. if p = Ij is in I(f) and q = f∞(Ij), then the degree of fIj ,f∞(Ij) is
the sum of αj and the local degree of f∞ at Ij.

Define Σ′ = EN and Σ = {(βn) ∈ Σ′, fβn,βn+1
exists}, the space

of itineraries between indeterminacy points and their preimages. We
consider the left shift σ on Σ and Σ′. Define N =

⋃

p∈E ∆p. For β ∈ Σ,
let us consider:

Kβ = {p ∈ N, f j(p) ∈ ∆β}.
Then, for all β ∈ Σ, Kβ is not empty as a decreasing intersection of
vertical closed sets in ∆β(0). Let K be the union of all the Kβ so that
K ⊂ N .

Observe that T ∧ [L∞] is the slice of T by (v = 0). Using the formula
giving the trace of T on L∞ and the invariance of T (f∗T = DT ), we
have that:

∀ p ∈ E, λp =
1

D

∑

q∈E

dp,qλq

with the convention that dp,q = 0 if fp,q is not defined. For all p ∈ E,
we deduce:

(3) 1 =
∑

q∈E

dp,qλq

Dλp

.

For example, if p is not an indeterminacy point, we have that all the
dp,q are zero except for q = f(p) and the formula becomes:

1 =
dp,f(p)λf(p)

Dλp

.

And if p = I is in the indeterminacy set with dI,q constant (i.e. f∞(I) /∈
E), then:

1 =
∑

q∈E

λq.

Let A := (aq
p)p,q∈E be the infinite matrix defined by aq

p =
dp,qλq

Dλp
. The

entry ap
q can be seen as the probability to go from ∆p to ∆q by f in term

of slice mass (see the proof of Theorem 3.5). Of course, if p is not an
indeterminacy point, one always goes to ∆f(p) (the probability is 1). We
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put on Σ the Borel measure ν defined by:

ν({β ∈ Σ, β(0) = β0, . . . , β(n) = βn}) = λβ0
×

n−1
∏

i=0

aβi+1
βi

= λβn
×

n−1
∏

i=0

dβi,βi+1

D
.

Proposition 3.4. The left shift σ on Σ defines a subshift for which the
measure ν is invariant and mixing.

Proof: Definitions and facts on symbolic dynamics and especially sub-
shift can be found in [KH95, pp. 156–158], although the authors do
not mention subshift on a countable alphabet, all the facts stated there
easily generalized to that case apart for the mixing (which is in general
false for subshift on a countable alphabet). By (3), we already have for
all p ∈ E that

(4)
∑

q

aq
p = 1.

What remains to be proved is that the vector (λp) is an eigenvector for
the matrix tA associated with the eigenvalue 1 (that gives the invariance
of ν). That is:

(5)
∑

p

aq
pλp = λq

which is clear again by (3).
Furthermore, the matrix A is transitive in the sense that for each (p, q)

the entry of index (p, q) in An is stricly positive for some n (it is clear if
p is in the indeterminacy set for n = 1 and if p ∈ f−j(I(f)), then it is
true for n = j + 1).

Now we consider only a finite part EN of E containing the indetermi-
nacy points and their preimages up to some order and regroup the rest
of the elements of E in a same box. That way, we get a finite Markov
chain, but we lose some part of the information, the application E 7→ EN

induces an application from the two subshifts which preserves the mea-
sure. That gives the mixing since we only need to consider cylinders
for the mixing, and a cylinder can be viewed as an element in (EN )N if
EN is large enough, and we know finite subshift are mixing.
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3.3. Decomposition of the Green current.

Let us denote by Lp,q the operator 1
dp,q

f∗
p,q acting on vertical currents.

Recall that f is a polynomial map of C2 having indeterminacy points
on L∞ which is f -attracting. The map f∞ is hyperbolic and the inde-
terminacy points of f are on the Fatou set of f∞ and not periodic. We
can now prove our main theorem:

Theorem 3.5. 1. There exists an at most countable set Θ ⊂ Σ such
that for all β ∈ Σ\Θ, there is a unique current Tβ satisfying the
following property: for all sequence of currents (Sk+1) of bide-
gree (1, 1), positive, closed, vertical in ∆β(k+1) of slice mass 1,
we have:

Lβ(0),β(1) . . .Lβ(k),β(k+1)Sk+1 −→ Tβ.

2. The Green current T admits the following decomposition in N :

T =

∫

Σ

Tβ dν(β).

Proof: Since K =
⋃Kβ , only a countable number of Kβ have positive

Lebesgue measure. Then Theorem 2.3 implies the first part.

For the second part, let S′
p be a smooth positive closed (1, 1)-form

in P
2 such that near L∞, S′

p has its support in ∆′
p =D

′
p×
{

|v|< ǫ√
1+|up|2

}

,

with D′
p ⋐ Dp. Let Sp be the current defined by S′

p in ∆p, it is a vertical
positive closed current. Normalize S′

p so that Sp is of slice mass λp. Ob-

serve that if S′ =
∑

S′
p then lim 1

Dn (fn)∗(S′) =
∑

lim 1
Dn (fn)∗(S′

p) = T
since

∑

λp = 1. Define S =
∑

Sp. Finally, write:

Σn = {(a0, a1, . . . , an−1) ∈ En | ∃ β ∈ Σ, ∀ i ≤ n − 1, ai = β(i)}
and for a ∈ Σn, write Ca for the cylinder:

{β ∈ Σ | β(0) = a0, . . . , β(n − 1) = an−1}.
Pulling back S by f gives:

1

D
f∗S =

1

D

∑

p,q∈E

f∗
p,qSq

=
∑

β∈Σ1

dβ(0),β(1)

D
Lβ(0),β(1)Sβ(1).

The bisdisks ∆p are not all disjoint, still, for a given p, the bidisks
corresponding to the preimages of p and to the points of indetermination
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are disjoints, so we can write uniquely f∗Sp =
∑

q∈f−1(p)∪I(f) S′′
q where

S′′
q = f∗

q,pSp is a vertical positive closed current in ∆q. We iterate:

1

Dk
(fk)∗S =

∑

β∈Σk

∏k−1
i=0 dβ(i),β(i+1)

Dk
Lβ(0),β(1) . . .Lβ(k−1),β(k)Sβ(k)

=
∑

β∈Σk

ν(Cβ)Lβ(0),β(1) . . .Lβ(k−1),β(k)

Sβ(k)

λk

.

The left hand side goes to the Green current T . By the first part of the
theorem, the general term of the right hand side tends to Tβ for β generic
so we get the result by dominated convergence.

Remark. The dynamics of f near infinity is semi-conjugated to the sub-
shift σ in the sense that f(Kβ) ⊂ Kσ(β).

We see that the current gives full mass to K which does not meet J∞.
So, as announced in the introduction, the local stable manifolds to the
points of the Julia set of f∞ do not carry any part of the Green current,
but they are contained in its support.

3.4. Escape rate.

We take f ∈ G satisfying the condition (2), we also suppose that
f∞(I(f)) ∩ E = ∅ (else, we would have p in E such that f(p) ∈
f(V (I(f)))). We want to compute the possible values of the upper
escape rate l̄ where log(l̄) = lim sup 1

n
log+ log+ ‖fn‖ which becomes

lim sup 1
n

log log(‖fn‖) in N . In the same way, we define the lower es-
cape rate l and we are interested in knowing where these two functions
match up, in which case we note l their common value which we simply
call the escape rate.

For p ∈ E\I(f), we set lp = D. We have the following lemma:

Lemma 3.6. Let β ∈ Σ and q ∈ Kβ. We have:

1

n
log log ‖fn(q)‖ =

1

n
log(lβ(0)lβ(1) . . . lβ(n−1)) + O

(

log n

n

)

.

Proof: We have constants c1 and c2 such that:

c1 ≤ log ‖f j+1(q)‖ − lβ(j) log ‖f j(q)‖ ≤ c2.

Taking a combination of these inequalities for j ≤ n − 1 gives:

c1





n−1
∑

j=0

lβ(j+1) . . . lβ(n−1)



+ lβ(0) . . . lβ(n−1) log ‖q‖ ≤ log ‖fn(q)‖,
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with a similar inequality for the right hand side. Taking the logarithm
and dividing by n give:

∣

∣

∣

∣

1

n
log log ‖fn(q)‖ − 1

n
log(lβ(0) . . . lβ(n−1))

∣

∣

∣

∣

≤ 1

n
log



log ‖q‖ + C

n−1
∑

j=0

1

lβ(0) . . . lβ(j−1)



 .

The sum in the right hand side is a O(n) which concludes the proof.

Choosing a suitable β, we deduce from the lemma that the range of
the escape rate in N is [min lI , D] (the details are left to the reader).
In this case, it is interesting to observe that the set of possible escape
rates is an interval which is a new property for polynomial mappings.
Let λ denote the slice mass 1−∑I∈I(f) λI of T outside a neighborhood

of I(f). We have the following theorem:

Theorem 3.7. For ‖T ‖-almost every point q in N , the escape rate l(q)

exists and is equal to Dλ
∏

I∈I(f) lλI

I .

Proof: Since the left shift σ is ergodic for ν, the Birkhoff’s ergodic the-
orem yields that for ν-almost every β:

exp

(

1

n

n−1
∑

i=0

log lσi(β)(0)

)

−→ exp

(∫

Σ

log lβ(0) dν

)

= Dλ
∏

I∈I(f)

lλI

I .

And the theorem follows from the previous lemma and Theorem 3.5.

3.5. Generalization.

In the case where some indeterminacy points are on J∞ (possibly pe-
riodic), we can obtain a decomposition of the Green current by building
a cover of J∞ by disks such that for all D in this cover, there exist dis-
joint disks D1, D2, . . . , Dd′ in the cover with f−1

∞ (D) ⊂ D1∪D2∪· · ·∪Dd′

and D ⋐ f∞(Di) for all i ≤ d′. The trick is to have two disks DI and D′
I

around each indeterminacy point I ∈ I(f) so that ∂f∞(DI) ∩ D = ∅

or ∂f∞(D′
I) ∩ D = ∅. Finally, we follow the construction of Section 3.1

with U being replaced by the union of all those disks.
This time we only have a finite number of bidisks and when we pull

back the Green current near some point of E to an indeterminacy point I
in J∞, we may have to choose between the two bidisks centered at I in
order to have a horizontal-like map. We only get a finite subshift, but
taking a finer cover, we get more precision on the decomposition (only
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on a smaller neighborhood of L∞). Somehow the decomposition is not
intrinsic because we do not pull back according to the itinerary but it
assures that the Green current is not extremal in a neighborhood of L∞.

3.6. Examples.

First let us explain our results in two examples where the dynamics
at infinity is linear.

Example 1. Consider the case where f∞ is given by u 7→ 2u and
where the indeterminacy set is reduced to (1, 0) with multiplicity 1 in
the (u, v) coordinates (thanks to Proposition 2.5, we know this case ex-
ists, take for example f(z, w) = C(2z(z − w) + z, w(z − w)) for C large
enough). Then, using Proposition 2.8, we find that:

• E =
{

pn =
(

1
2n , 0

)

, n ≥ 0
}

.

• λn = 1
2n .

• The matrix of the subshift is:










1
2

1
4

1
8 . . .

1 0 0 . . .
0 1 0 . . .
...

...
...

. . .











.

An element β ∈ Σ can be written (pn1
, pn1−1, . . . , p0, pn2

, . . . , p0, . . . ) for
some sequence (ni) in N. The dynamics in the space of itineraries is
simple: a point in Kβ where β0 = pn1

is sent near pn1−1 then near pn1−2

and so on until it arrives near p0, in which case it can be sent near any
element of E since p0 is an indeterminacy point.

Example 2. This time, we still take f∞ given by u 7→ 2u and we
suppose that the indeterminacy points are I0 = (2, 0) and I1 = (1, 0)
with multiplicity 1 in the (u, v) coordinates, so D = 3 (for example:
f(z, w) = (2z(z − w)(z − 2w) + z2, w(z − w)(z − 2w))). In this case, we
have that f−1

∞ I0 = I1. Again, using Proposition 2.8, we find that:

• E =
{

pn =
(

1
2n−1 , 0

)

, n ≥ 0
}

.

• We have λ0 = λI0 = 1
3 , λ1 = λI1 = 4

9 , λpn
= 4

3n+1 .

• The matrix of the subshift is:














1
3

4
9

4
27

4
34 . . .

1
2

1
3

1
9

1
33 . . .

0 1 0 0 . . .
0 0 1 0 . . .
...

...
...

...
. . .















.
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The interesting fact here is that the entries of the second row are not
proportionnal to the the slice mass, indeed a point near I1 will have
“more chances” to be sent on ∆I0 by f since f∞(I1) = I0.

Example 3. Now, we consider the case were the indeterminacy points
are in the exceptionnal set of f∞ (namely f−1(I) = I). Observe that
this case does not meet the hypothesis of Theorem 3.5 since the indeter-
minacy points are periodic. For example, let f : (z, w) 7→ (z3 +w2, zw2).

By Proposition 2.5, L∞ is f -attracting. We even have ‖f(z, w)‖ ≥
‖(z, w)‖2 for ‖(z, w)‖ large enough. The meromorphic extension of f
to P2 is given by: f([Z : W : T ]) = [Z3 + TW 2 : ZW 2 : T 3]. The
indeterminacy set of f is reduced to I0 = [0 : 1 : 0] and the dynamics
at infinity is given by f∞ : [z : w : 0] 7→ [z2 : w2 : 0] (so f−1

∞ (I0) = I0).
Thus f is in G and is algebraically stable.

The topological degree dt of f , which is by definition the number of
preimages of a generic point, is equal to 8 (solve f(z, w) = (0, 1)). It is
greater than the algebraic degree.

We use the coordinates (u, v) =
(

Z
W

, T
W

)

in which L∞ is given
by (v = 0). The map f becomes:

f : (u, v) 7−→
(

u3 + v

u
,
v3

u

)

.

In these coordinates, the point I0 becomes (0, 0). The map f∞ is given
by u 7→ u2 for which the Julia set J∞ is the unit circle (|u| = 1). We
have the following lemma:

Lemma 3.8. Let V =
{

(u, v), |u| < 1
2 and |v| < 1

4 |u|3
}

, then f(V )⊂V .

Proof: Observe that (0, 0) is not in V since f is not defined there. Let
(u, v) be in V . We check:

|u3 + v|
|u| ≤ |u|2 +

|v|
|u| <

1

4
+

|u|2
4

<
1

2
.

We also have the inequalities:

|u3 + v|
|u| ≥ |u|2 − |v|

|u| > |u|2 − |u|2
4

>
1

2
|u|2

|v|3
|u| <

1

43
|u|8.
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It is then sufficient to check that:

1

43
|u|8 <

1

4

(

1

2
|u|2
)3

which is obvious.

We deduce from the lemma that V is in the Fatou set since the se-
quence of iterates is normal there. Let then D0 ⊂ D1 be disks on L∞

centered on I0, small enough to be contained in V , with f−1
∞ (D0) ⋐ D1.

Let D2 be a disk centered on [1 : 0 : 0] containing the Julia set of f∞
with ∂D2 ⊂ V . We have that f−1(D2) ⋐ D2. We can shrink those disks
to have D1 ∩ D2 = ∅.

As in Proposition 3.1, we want to “thicken” those disks in order to
have bidisks such that f defines by restriction horizontal-like maps be-
tween them. Close to I, the norm of a point (in the (z, w) coordinates) is

given by |v|−1, but next to [1 : 0 : 0], it is controled by |u|
|v| so we use the

coordinates (u′, v′) =
(

T
Z

, W
Z

)

there. Then, we define ∆0 = D0×(|v| < ε),
∆1 = D1 × (|v| < ε) and ∆2 = D2 × (|u′| < ε′). Take ε and ε′ small
enough so that the vertical boundaries of the bidisks are relatively com-
pact in V . Observe that ∆1\∆0 ⊂ V is in the Fatou set of f .

Recall that since I0 is an indeterminacy point, any neighborhood of
I0 is sent on the whole L∞. Since L∞ is f -attracting, and by uniform
continuity of f away from any neighborhood of I0, we can chose ε and
ε′ small enough so that:

• f : ∆1 → ∆0 defines a horizontal-like map of degree 3 denoted
by f1,0.

• f : ∆1 → ∆2 defines a horizontal-like map of degree 1 denoted
by f1,2.

• f : ∆2 → ∆2 defines a horizontal-like map of degree 2 denoted
by f2,2.

Next, we consider the Green current T of f . We know that its support
is contained in the Julia set of f (see [Sib99]). So we know that in some
neighborhood of infinity, T can be written as T1+T2 where T1 and T2 are
vertical positive closed currents in ∆0 ⊂ ∆1 and in ∆2. Pulling-back T1

and T2 and using the invariance of T , we see that:

1

3
f∗T = T = T1 + T2.
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So:

T1 =
1

3
f∗
1,0T1 +

1

3
f∗
1,2T2

T2 =
1

3
f∗
2,2T2.

Calling m1 and m2 the slice masses of T1 and T2, we can compute them
using the previous equation and the fact that the pull-back of a vertical
current of slice mass m by a horizontal-like map of degree d is of slice
mass dm. So, we have:

m1 = m1 +
1

3
m2

m2 =
2

3
m2.

Hence, m2 = 0 and so T2 = 0. In particular, the support of the Green
current of f is strictly contained in the Julia set J since the stable mani-
folds associated to the Julia set J∞ of f∞ are in J but supp(T ) does not
meet J∞. In [FS95], there is a different example of such phenomenon.

For ε > 0, we consider the small perturbation fε defined by:

fε : (z, w) 7−→ ((z + εw)z2 + w2, (z + εw)w2).

We check that fε gives the same map at infinity than f and that the
indeterminacy point is now Iε = [−ε : 1 : 0]. We see that the preimages
of Iε accumulate on the Julia set of fε∞ and we have seen that they are
on the support of the Green current which contrasts with what happens
for f . Here the support of the Green current does not vary continuously
with ε whereas the Green current itself varies continuously for the weak
topology.

The method used to study that example can be generalized to the
case where the indeterminacy set is contained in the exceptionnal set.
For the case where f∞ = zn and I(f) = {[1 : 0 : 0], [0 : 1 : 0]} we also
need to use the method of Section 3.5 (we take two bidisks around each
indeterminacy point). The symbolic dynamics that arises here is a finite
subshift at two elements.
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[Duj04] R. Dujardin, Hénon-like mappings in C
2, Amer. J. Math.

126(2) (2004), 439–472.
[FJ05] C. Favre and M. Jonsson, Eigenvaluations, available at

www.arxiv.org/pdf/math.DS/0410417 (2005).
[FS95] J. E. Fornæss and N. Sibony, Complex dynamics in higher

dimension. II, in: “Modern methods in complex analysis”
(Princeton, NJ, 1992), Ann. of Math. Stud. 137, Princeton
Univ. Press, Princeton, NJ, 1995, pp. 135–182.

[KH95] A. Katok and B. Hasselblatt, “Introduction to the mod-
ern theory of dynamical systems”, With a supplementary chap-
ter by Katok and Leonardo Mendoza, Encyclopedia of Math-
ematics and its Applications 54, Cambridge University Press,
Cambridge, 1995.

[Mil99] J. Milnor, “Dynamics in one complex variable. Introductory
lectures”, Friedr. Vieweg & Sohn, Braunschweig, 1999.

[Sib99] N. Sibony, Dynamique des applications rationnelles de Pk,
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