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ON THE MULTIPLE OVERLAP FUNCTION OF THE

SK MODEL

Sérgio de Carvalho Bezerra1 and Samy Tindel

Abstract
In this note, we prove an asymptotic expansion and a central limit
theorem for the multiple overlap R1,...,s of the SK model, defined
for given N, s ≥ 1 by R1,...,s = N−1

P

i≤N σ1

i
. . . σs

i
. These re-

sults are obtained by a careful analysis of the terms appearing
in the cavity derivation formula, as well as some graph induction
procedures. Our method could hopefully be applied to other spin
glasses models.

1. Introduction

The celebrated SK model, which can be seen as a generic spin model
with random interactions, also happened to model (together with some
of its generalizations) different situations, such as disordered particle
systems or neural capacity (see [5], [7]). Briefly speaking, the canonical
space of the model is the set ΣN = {−1, 1}N , called space of configu-
rations, where N is a positive integer which represents the number of
spins. A configuration σ = (σ1, . . . , σN ) ∈ ΣN specifies the values of all
spins and the probabilistic feature of the model emerges when we sup-
pose that the spin interactions occur randomly and the energy of each
configuration, sum of all the interactions, can be written as

(1) −HN(σ) =
1

N
1
2

∑

1≤i<j≤N

gi,jσiσj ,

where gi,j is a family of independent standard Gaussian random variables

defined on a probability space (Ω,F ,P) and 1/N
1
2 is a normalization

factor.
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As usual in statistical mechanics, we associate a Gibbs measure GN

on ΣN to the Hamiltonian HN , and this Gibbs measure depends on a pa-
rameter β whose meaning is the inverse of the system temperature. The
model constructed then starting from (1) has been introduced first [7] in
order to describe spin glass systems, i.e. magnetic systems in which the
interaction between the magnetic moments are ‘in conflict’ with each
other. Since then, the Physicists have been mostly interested in the
behavior of the SK model for large values of β, but let us mention at
this point that during all this work, we assume to be in the region of
high temperature (i.e. β < 1) for which a huge amount of information
is available (see [8], [2], [6], and the path-breaking papers [3], [9] for
the SK model with external field). Let us introduce also some classical
notation, which will allow us to state our main results: given a positive
integer number n (number of system replicas) and f a function on Σn

N ,
we define 〈f〉 as the expected value of f with respect to the product
measure dG⊗n

N and ν(f) as the expected value of 〈f〉 with respect to the
randomness contained in the coefficients gi,j, that is ν(f) = E[〈f〉].

The problem we will deal with starts from the following observation: a
large proportion of the structural information about the behavior of ΣN

under GN is usually obtained by studying the so-called overlap between
two configurations σ1 and σ2, defined by

R1,2 ,
1

N

N
∑

i=1

σ1
i σ2

i ,

which can be also related to the Hamming distance between σ1 and σ2

(understood as two independent configurations under G⊗2
N ). And a nat-

ural extension of R1,2 would be a quantity that measures the correlation
among s configurations, for example:

(2) R1,2,...,s ,
1

N

N
∑

i=1

σ1
i σ2

i . . . σs
i .

Clearly, the asymptotic behavior of such a quantity would give us some
additional information about the limiting spin system when N goes to
infinity. However, in spite of the sharp asymptotic estimates available
for R1,2, the study of R1,2,...,s for s > 2 is still poorly developed, and this
paper proposes to make a step in that direction: we will prove the fol-
lowing CLT (central limit theorem) for a family (Rℓ1,ℓ2,...,ℓs)1≤ℓ1<···<ℓs≤n

for any s > 2.
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Theorem 1.1. Consider two integers 3 ≤ s ≤ n, and for 1 ≤ ℓ1 <
· · · < ℓs ≤ n some non-negative integers k(ℓ1, . . . , ℓs). Set k =

∑

ℓ1,...,ℓs

k(ℓ1, . . . , ℓs). Then

(3) ν

(

∏

ℓ1<···<ℓs

R
k(ℓ1,...,ℓs)
ℓ1,...,ℓs

)

−
∏

ℓ1<···<ℓs

a(k(ℓ1, . . . , ℓs))

N
k(ℓ1,...,ℓs)

2

= O(k + 1),

where we denote by a(k) the kth moment of a standard Gaussian ran-
dom variable, and where the relation g = O(k) means the existence of a
constant c such that |g| < c

Nk/2 .

This theorem implies that for a typical disorder, a finite family of
functions,

R̂ℓ1,...,ℓs =
√

NRℓ1,...,ℓs

defined on (Σn
N , G⊗n

N ), with s ≥ 3, asymptotically looks like an indepen-
dent family of standard centered Gaussian random variables. It is worth
observing that, contrarily to the case s = 2 treated in [8], for s > 2, the
dependence on β in the normalization of Rℓ1,...,ℓs disappears. This has
been a surprise for us. Let us also mention at this point that, from our
point of view, the study of multiple overlaps is a natural question, which
illustrates the fact that the understanding of the SK model is still far
from being complete.

On our way to the proof of Theorem 1.1, we will have to compute the
first two terms in the expansion of ν(R2

1,2,...,s), and we will obtain a result
which generalizes a result obtained by Talagrand [8, Proposition 2.3.5]
for s = 2:

Theorem 1.2. Given s ∈ N and β < 1, the following relations hold
true:

i) If s is odd (s ≥ 3), then

(4) ν
(

R2
1,2,...,s

)

=
1

N
+ O(2p), for all p ≥ 2.

ii) If s is even (s = 2k), we have

(5) ν
(

R2
1,2,...,s

)

=
1

N
+

c(β, s)

Nk
+ O(2k + 1),

where c(β, k) = (2k)!
k! ( β2

2(1−β2) )
k.

Theorem 1.2 can be seen in fact as the main contribution of this paper.
Indeed, on one hand, once these relations are proven, the announced CLT
can be deduced by means of the standard methods introduced e.g. in [8],
and one could also argue that it is implicitly contained in [4] (or at
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least, that the techniques involved in [4] could yield the proof of our
Theorem 1.1); notice however that this latter reference relies heavily on
the fact that the SK model without external field is considered. On
the other hand, our expansion of ν(R2

1,2,...,s) is new; it will be achieved
thanks to some graph-type methods, which have their own interest in
the SK context, and are introduced here for the first time (as far as
we know). Furthermore, it seems that our computations don’t depend
too much on the specific model we have considered, and thus we hope
to extend this kind of methodology to other situations, like the p spins
models with external field or the perceptron model.

Our paper is organized as follows: In the next section, we introduce
some notations and definitions. In the third section, performing a Taylor
expansion, we obtain a general expression of νt(f) where f is a function
defined on Σn

N , and we evaluate the leading term of ν (
∏m

i=1 ǫℓiǫjiRℓi,ji)

for some specific ℓi’s and ji’s (where ǫl = σl
N ). The fourth section will

be devoted to the computation of ν0(f) for a certain class of functions f .
Eventually, in the last two sections, we conclude with the proof of The-
orems 1.2 and 1.1.

2. Preliminaries

In this section, we will first introduce some notations, and then give
briefly some definitions which will be used in the sequel of the paper.
Eventually, we will explain the strategy of the proof of Theorem 1.2.

2.1. Smart path and overlap products.

In order to expand ν(R2
1,2,...,s) in terms of N , the use of Taylor series

is certainly a natural idea. So, for a given configuration σ ∈ ΣN and a
parameter t ∈ [0, 1], define a new energy function

HN,t(σ) =
1

N1/2

∑

1≤i<j≤N−1

gi,jσiσj +

(

t

N

)1/2

σN

∑

1≤i≤N−1

σigi,N ,

where the coefficients gi,j are, as before, independent Gaussian standard
random variables. Set now

GN,t({σ}) =
exp(−βHN,t(σ))

ZN,t
, where ZN,t =

∑

σ∈ΣN

exp(−βHN,t(σ)).
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These random measures induce some averages 〈f〉t and νt(f) defined,
for a function f : Σn

N → R, by

〈f〉t =

∑

σ1,...,σn∈ΣN
f(σ1, . . . , σn) exp

(
∑n

i=1 −βHN,t(σ
i)
)

Zn
N,t

and νt(f) = E[〈f〉t]. Define also the overlap functions Rℓi,ji and R−
ℓi,ji

by

Rℓi,ji ,
1

N

∑

k≤N

σℓi

k σji

k , and R−
ℓi,ji

,
1

N

∑

k≤N−1

σℓi

k σji

k .

Then the function t 7→ νt(f) can be differentiated in the following way
(see [8]):

Proposition 2.1. Given a function f on Σn
N and t ≥ 0, we have

ν′
t(f) = β2

∑

1≤l<l′≤n

νt(fǫlǫl′R
−
l,l′)

− β2n
∑

l≤n

νt(fǫlǫn+1R
−
l,n+1)

+ β2 n(n + 1)

2
νt(fǫn+1ǫn+2R

−
n+1,n+2).

This proposition will the basis of our future expansions.

Apart from the usual overlap function R1,2, we will have to intro-
duce a specific notation for some products of overlaps which will ap-
pear throughout our computations: given some arbitrary positive integer
numbers ℓ1, j1, . . . , ℓm, jm such that ℓi ≤ ji for all i ≤ m, we set

(6) Sℓ1,j1,...,ℓm,jm ,

m
∏

i=1

ǫℓiǫjiRℓi,ji , S−
ℓ1,j1,...,ℓm,jm

,

m
∏

i=1

ǫℓiǫjiR
−
ℓi,ji

.

Remark 2.2. The importance of the products ǫℓiǫjiRℓi,ji stems basically
from Proposition 2.1, in which they appear naturally.

2.2. Sets and graphs.

Our proofs will also make use of two subsets of tuples of positive
integers: given a positive integer k, set

(7) Ω2k , {(r1, . . . , r2k) ∈ N
2k | ri ≤ N, ri 6= rj if 1 ≤ i < j ≤ 2k

and r2u−1 < r2u for all u ≤ k}
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and

(8) Ck , {α = (ℓ1, j1, . . . , ℓm, jm) | (H) holds true},
where (H) is the following assumption:

• ℓi is smaller than ji for any i ≤ m;
• If α also designates the set {ℓ1, j1, . . . , ℓm, jm}, then {1, 2, . . . , 2k}⊂

α;
• The only elements of α which appear an odd number of times

are 1, 2, . . . , 2k.

Obviously, the definition of the quantity Sℓ1,j1,...,ℓm,jm depends on
the sequence (ℓ1, j1, . . . , ℓm, jm). For sake of clarity, we will associate a
graph to such kind of sequence, where a graph is understood for us in
the following sense:

Definition 2.3. Let I be a set of positive integers and E be a subset
of I × I. We refer to I as the vertex set and to E as the edge set. In
addition, if (i, j) ∈ E, assume that i < j and let Υ: E → N

∗ be a function
which counts the number of edges of type (i, j). Then, the triple (I, E, Υ)
is called a graph. Given a graph (I, E, Υ), for each J ⊆ I, F ⊆ J × J
with F ⊆ E and V : F → N

∗ such that for all e ∈ F , V (e) ≤ Υ(e), we
call (J, F, V ) a subgraph of (I, E, Υ). Obviously, a subgraph is also a
graph.

Here is now the procedure we will use for our graph construction: pick
a sequence (ℓ1, j1, . . . , ℓm, jm) of 2m numbers, and assume, for sake of
simplicity, that ℓi < ji for all 1 ≤ i ≤ m. Define then

• I = {ℓ1, j1, . . . , ℓm, jm};
• E = {(ℓi, ji)|i ≤ m};
• Υ((ℓi, ji)) = #{r ≤ m | (ℓi, ji) = (ℓr, jr)}.

We denote this graph by G((ℓ1, j1, . . . , ℓm, jm)). In particular, given our
set Ck we can associate the family of graphs Gk = {G(c) | c ∈ Ck}.

Let us define some local and global objects on a graph g = (I, E, Υ).
Set first

Ng(i) ,
∑

e∈E:i∈e

Υ(e) and N(g) =
∑

e∈E

Υ(e).

Obviously, Ng(i) represents the number of edges having i as an endpoint,
and N(g) the total number of edges of g. Furthermore, it is easily checked
that N(g) = 1

2

∑

i∈I Ng(i). Let us also define a quantity, associated to
each vertex i, indicating if Ng(i) is an odd number or not:

Od(i) =
1

2
[Ng(i) mod(2)] and Od(g) ,

∑

i∈I

Od(i).
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Associated to these notions, some subgraphs of graphs in Gk will play a
special role in the sequel: for each g ∈ Gk with N(g) = m and any u ≤ m,
we define

Su(g) , {h | h is a subgraph of g, and N(h) = u}.

Notice that the definitions of the current subsection won’t be used until
Proposition 4.4. However, we have already introduced them at this point,
since they are at the core of our method.

2.3. Strategy of the proof for Theorem 1.2.

The proof of our main result Theorem 1.2 is built upon a series of
lemmas and propositions which will be stated and proved throughout
Sections 3 and 4. Since the reader may get lost during these preliminary
steps, here is a brief sketch of the methodology we will follow in order
to estimate ν(R2

1,...,s).

(1) Using the symmetry property among sites, we will check that

ν
(

R2
1,2,...,s

)

=
1

N
+ ν

(

ǫ1ǫ2 . . . ǫsR
−
1,2,...,s

)

.

With this relation in mind, our main task will be obviously to esti-
mate the term ν(ǫ1ǫ2 . . . ǫsR

−
1,2,...,s). We will see that, whenever s is an

odd number, the estimation is quite easy, and thus, we will concentrate
mainly on the case s = 2k.

(2) In order to get an equivalent of ν(ǫ1ǫ2 . . . ǫ2kR−
1,2,...,2k), we will per-

form a Taylor expansion of this quantity along the smart path defined
by νt. Then, due to the presence of the products of ǫ’s, we will be able
to show that many terms of the expansion vanish, or can be neglected.
These preliminary considerations will be developed at Section 3.1, and
will lead us to focus essentially on some terms of the form

ν0

(

U−
k S−

α

)

with U−
k = ǫ1ǫ2 . . . ǫ2kR−

1,2,...,2k,

where the multi-index α = (ℓ1, j1, . . . , ℓm, jm) lies in a certain class which
will be determined throughout Section 3.

(3) Recall that Ck has been defined in (8). Then we will prove that,
whenever the multi-index α = (ℓ1, j1, . . . , ℓm, jm) belongs to Ck, we have

(9) ν0(U
−
k S−

α ) = ν(Sα) + O(2k + 1).
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This will be achieved at Section 4.2, through the introduction of a family
of functions, called R-systems, allowing an operational backward induc-
tion on the order of multi-indexes defined in (8).

(4) By looking at relation (9), we see that we are left with with the eval-
uation of the quantities S−

α . Equivalently, since the random variables S−
α

are stable by multiplication, we have to deal with their covariance struc-
ture. This depend mainly on the form of the multi-index α, and after
some rather standard computations, we will base our estimates on:

1) An equivalence relation between multi-indexes (see Proposition 3.8).
2) A graph structure on these multi-indexes, which will be used mainly

at Section 4.1.

Thanks to the two tools mentioned above, we will be able to analyze pre-
cisely the covariance structure of the random variables S−

α , leading then
to the conclusion of our proof by a series of elementary considerations.

3. Some general Taylor expansions

In this section, we will first establish a general expression for the Tay-
lor expansion of the function t 7→ νt(f) around 0, for a given f : Σn

N → R.
Then we will identify some negligible terms and give a more explicit ex-
pression for the typical term of this expansion. Eventually, we will ex-
amine the special case where f is the function S−

ℓ1,j1,...,ℓm,jm
, and using

an induction argument, we will evaluate ν(Sℓ1,j1,...,ℓm,jm).

3.1. General and error term.

Let us start this section by giving an extension of Proposition 2.1:
for k, n ≥ 1, define the set Dn,k as

(10) Dn,k ={α=(ℓ1, j1, . . . , ℓk, jk); ℓi, ji ≤ n+2k, ℓi < ji for all i≤k} .

Proposition 3.1. Let f be a function on Σn
N and consider t ≥ 0. Then

the kth derivative of νt(f) can be written as

(11) ν
(k)
t (f) =

∑

α=(ℓ1,j1,...,ℓk,jk)∈Dn,k

c (n, k, α)β2kνt

(

fS−
ℓ1,j1,...,ℓk,jk

)

,

where the family {c (n, k, α) ; α ∈ Dn,k} is just a family of Z-valued
coefficients.

Proof: The approach used to show the result is an induction argument
on k: the case k = 1 can be easily shown thanks to Proposition 2.1,
and in order to advance the induction, we assume that the result holds
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for k = u − 1. Let us differentiate now a typical term of ν
(u−1)
t (f), of

the form

cβ2(u−1)νt (g) , with g = fS−
ℓ1,j1,...,ℓu−1,ju−1

,

where ℓ1, j1, . . . , ℓu−1, ju−1 ≤ n′, with n′ ≡ n + 2(u − 1). Thus we get,
by means of Proposition 2.1, that

ν′
t(g) = β2

∑

1≤l<l′≤n′

νt(gS−
l,l′)

− β2n′
∑

l≤n′

νt(gS−
l,n′+1) + β2 n′(n′ + 1)

2
νt(gS−

n′+1,n′+2),

which is easily seen to be of the form given by (11).

Let us recall now an estimate for ν
(i)
t (f) which can be found in [8]:

Proposition 3.2. If f is a function defined on Σn
N and β < 1, then for

all t ∈ [0, 1) we have

∣

∣

∣ν
(i)
t (f)

∣

∣

∣ ≤ K(β, i, n)

N
i
2

ν(f2)
1
2 .

The following estimations for the variables Sℓ1,j1,...,ℓs,js will be also
be used several times along the article:

Proposition 3.3. Given s ≥ 1 and a family of integers ℓ1, j1, . . . , ℓs, js,
we have, for all β < 1:

(a) ν(S−
ℓ1,j1,...,ℓs,js

) = O(s).

(b) ν(Sℓ1,j1,...,ℓs,js) = O(s).

(c) ν0(S
−
ℓ1,j1,...,ℓs,js

) = O(s).

(d) ν
(u)
t (S−

ℓ1,j1,...,ℓs,js
) = O(u + s) for all t ∈ [0, 1].

Proof: Relations (a)–(c) are proved in [1]. The last relation follows easily
from the previous ones, together with Proposition 3.2.

3.2. Negligible terms.

We will try now to find a class of terms in (11) for which the coeffi-
cient c(n, k, α) vanishes. And a basic tool for this kind of identification
can be found again in [8]:
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Proposition 3.4. Let f be a function defined on Σn
N . Assume f = f−f ′

where f− is a function of the N −1-spin system, and f ′ depends only on
ǫ1, . . . , ǫn. If Avf ′ = 0 (where Av means average on ǫ1 = ±1, . . . , ǫN =
±1) then

ν0(f) = 0.

As an application of this proposition, we easily get the following result:

Proposition 3.5. Let f be a function on Σn
N . Assume f =ǫm1 . . . ǫmf

−

with  a positive integer number, f− a function on the N −1-spin system

and where all of the m’s are different positive integers. Then ν
(u)
0 (f) = 0

in the following two cases:

i)  = 2k for k ∈ N and u < k.
ii)  is an odd number, without any restriction on u ∈ N.

Proof: First of all, according to Proposition 3.1, ν
(u)
0 (f) can be written

as a sum of terms of the type

cβ2uν0

(

f−


∏

i=1

ǫmiS
−
ℓ1,j1,...,ℓu,ju

)

.

Now, either if  = 2k and u < k, or if  is an odd number, there exist
some distinct positive integers m̃1, . . . , m̃v such that

ν0

(

f−

t
∏

i=1

ǫmiS
−
ℓ1,j1,...,ℓu,ju

)

= ν0

(

v
∏

i=1

ǫm̃i f̃

)

,

where f̃ is a function of the N−1-spin system. Invoking Proposition 3.4,
the previous term vanishes, which ends the proof.

3.3. A more explicit general term.

Our next task here will be to compute the values of some of the con-
stants c’s appearing in Proposition 3.1. This will lead us to introduce a
relation defined on the 2k-tuples of positive integers: given two 2k-tuples
of positive integers r and s we will say that r ∼ s if for all 1 ≤ i ≤ k there
exists a 1 ≤ j ≤ k such that (r2i−1, r2i) = (s2j−1, s2j), and reciprocally,
if for all j there exists a i such that (s2j−1, s2j) = (r2i−1, r2i).
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Proposition 3.6. Given k ≥ 1, recall that Ω2k has been defined at
relation (7), and consider a function f defined on Σ2k

N . For u ≤ k, pick

an element w , (w1, . . . , w2u) ∈ Ω2u, such that wi ≤ 2k for all i ≤ 2u.
Then, for all β < 1, t ∈ [0, 1], we have

(12) ν
(u)
t (f) = u!β2uνt

(

fS−
w1,w2,...,w2u−1,w2u

)

+ β2u
∑

r≁w

c(r)νt

(

fS−
r1,r2,...,r2u−1,r2u

)

,

for a family of Z-valued constants {c(r), r ≁ w} which vanish except for
a finite number of r ≁ w.

Proof: Here again, we will use an induction argument on u: the case u=1
is a direct application of Proposition 2.1, since in this case Ω2u = Ω2 =
{(r1, r2); r1 < r2}, and the only elements w ∈ Ω2 satisfying wi ≤ 2k are
of the form w = (l, l′) with 1 ≤ l < l′ ≤ 2k.

Now, let us assume (12) holds true for u = v − 1. For a given w =
(w1, . . . , w2v) ∈ Ω2v, let W be the set defined by:

W = {w̃ ∈ Ω2v−2 | for all i ≤ v − 1, there exists j ≤ v

such that (w̃2i−1, w̃2i) = (w2j−1, w2j)}.

Let us denote also by W̃ the set W/ ∼. For each w̃ which represents a

class in W̃ , our induction hypothesis yields

(13) ν
(v−1)
t (f) = (v − 1)!β2v−2νt

(

fS−
w̃1,w̃2,...,w̃2v−3,w̃2v−2

)

+ β2v−2
∑

r̃≁w̃

c(r̃)νt

(

fS−
r̃1,r̃2,...,r̃2v−3,r̃2v−2

)

.

When we take into account all the possible classes in W̃ , we conclude
that the sum (13) can be decomposed as:

(14) ν
(v−1)
t (f) = (v − 1)!β2v−2

∑

w̃∈W̃

νt

(

fS−
w̃1,w̃2,...,w̃2v−3,w̃2v−2

)

+ β2v−2
∑

r̃ /∈W̃

c(r̃)νt

(

fS−
r̃1,r̃2,...,r̃2v−3,r̃2v−2

)

.

Now, for each w̃ ∈ W̃ , we choose the only couple (ℓ1(w̃), ℓ2(w̃)) such
that (w̃, ℓ1(w̃), ℓ2(w̃)) ∼ w. Our assumptions also imply that ℓ1, ℓ2 ≤ 2k.
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Furthermore, using the case u equals to one, we can calculate the deriv-
ative of each term on the right hand side of (14). Hence, differentiating
equation (14), we get:

ν
(v)
t (f)=(v − 1)!β2v

∑

w̃∈W

νt

(

fS−
w̃1,w̃2,...,w̃2v−3,w̃2v−2

S−
ℓ1(w̃),ℓ2(w̃)

)

+(v − 1)!β2v
∑

w̃∈W

∑

l 6=(ℓ1(w̃),ℓ2(w̃))

c(l)νt

(

fS−
w̃1,w̃2,...,w̃2v−3,w̃2v−2

S−
ℓ1,ℓ2

)

+β2v
∑

r̃ /∈W̃

∑

l=(ℓ1,ℓ2)

c(r̃)νt

(

fS−
r̃1,r̃2,...,r̃2v−3,r̃2v−2

S−
ℓ1,ℓ2

)

.

(15)

Recall now that, for each w̃ ∈ W̃ , there is a unique couple (ℓ1(w̃), ℓ2(w̃))

such that (w̃, ℓ1(w̃), ℓ2(w̃))∼w. Since |W̃ | = v, we conclude that the first
term on the right side of (15) is equal to u!β2uνt(fS−

w1,w2,...,w2u−1,w2u
).

Moreover, it is easily checked that the other terms in (15) give some
contributions of the form

β2u
∑

r≁w

c(r)νt

(

fS−
r1,r2,...,r2u−1,r2u

)

,

concluding the proof.

3.4. The product of overlap functions.

Let us focus now on the special case f = S−
ℓ1,j1,...,ℓk,jk

, and let us try
to identify some additional negligible terms in our expansion: according
to Proposition 3.6, the kth order differentiation of νt(f) brings out some
terms of the form

(16) νt

(

S−
ℓ1,j1,...,ℓk,jk

S−
r1,r2,...,r2k−1,r2k

)

=νt

(

S−
ℓ1,j1,...,ℓk,jk,r1,r2,...,r2k−1,r2k

)

.

Recall that Theorem 1.2 claims an expansion up to order O(2k+1), and
thus, a natural concern for us will be to establish if the terms of the
form (16) are of order O(2k) or not. A first step in that direction will
be to replace S−

ℓ1,j1,...,ℓk,jk
by Sℓ1,j1,...,ℓk,jk

, which can be done thanks to
the following:

Proposition 3.7. Given β < 1, s ≥ 1 and a collection of integers
ℓ1, j1, . . . , ℓs, js, we have

i) ν(S−
ℓ1,j1,...,ℓs,js

) = ν0(S
−
ℓ1,j1,...,ℓs,js

) + O(s + 1).

ii) ν(S−
ℓ1,j1,...,ℓs,js

) = ν(Sℓ1,j1,...,ℓs,js) + O(s + 1).
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Proof: i) This relation is an easy consequence of the general expansion
given at Proposition 2.1, and of Proposition 3.3, item (d).

ii) Notice that

S−
ℓ1,j1,...,ℓs,js

=

s
∏

j=1

S−
ℓi,ji

.

Thus, using the relation S−
l,l′ = Sl,l′ − 1

N , it is readily checked that

(17)

ν
(

S−
ℓ1,j1,...,ℓs,js

)

=
s
∑

u=1

∑

1≤i1<···<iu≤s

(−1)s−u

Ns−u
ν
(

Sℓi1 ,ji1 ,...,ℓiu ,jiu

)

+
(−1)s

Ns
.

Applying now Proposition 3.3 for each tuple (ℓi1 , ji1 , . . . , ℓiu , jiu), it fol-
lows that we have, for u ≤ s − 1,

(18)
(−1)s−u

Ns−u
ν
(

Sℓi1 ,ji1 ,...,ℓiu ,jiu

)

= O(2(s − u) + u).

Furthermore, for 1 ≤ u ≤ s− 1, we have 2(s− u) + u ≥ s + 1. Thus, the
announced result is easily obtained by plugging (18) into (17).

Let us compute now the terms of the form (16):

Proposition 3.8. For β < 1 and r, w ∈ Ω2k, if r ≁ w, the following
relation holds true:

(19) ν
(

S−
r1,r2,...,r2k−1,r2k

S−
w1,w2,...,w2k−1,w2k

)

= O(2k + 1).

On the other hand, if r ∼ w, we have

ν
(

S−
r1,r2,...,r2k−1,r2k

S−
w1,w2,...,w2k−1,w2k

)

=ν

(

(

S−
r1,r2,...,r2k−1,r2k

)2
)

=
1

[N(1 − β2)]k
+O(2k+1).

(20)

Proof: Let (ℓ1, j1, . . . , ℓ2k, j2k) be by definition the tuple (r1, . . . , r2k,
w1, . . . , w2k). Then

ν
(

S−
r1,r2,...,r2k−1,r2k

S−
w1,w2,...,w2k−1,w2k

)

= ν
(

S−
ℓ1,j1,...,ℓ2k,j2k

)

.

Step 0: We can assume w is a permutation of r.

Proposition 3.7, item i) yields

ν
(

S−
ℓ1,j1,...,ℓ2k,j2k

)

= ν0

(

S−
ℓ1,j1,...,ℓ2k,j2k

)

+ O(2k + 1).
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Moreover, whenever w is not a permutation of r, there exists a v-tu-
ple (t1, . . . , tv) such that all the indices t1, . . . , tv are distinct and such
that

2k
∏

i=1

ǫℓiǫji =

v
∏

i=1

ǫti .

Thanks to Proposition 3.5 it follows that the term ν0(S
−
ℓ1,j1,...,ℓ2k,j2k

)

vanishes, and we get ν(S−
ℓ1,j1,...,ℓ2k,j2k

) = O(2k+1). Hence, in the sequel
of the proof, w will be assumed to be a permutation of r. Notice also that
the remainder of the proof is a little cumbersome, and the reader may
wish to follow it with an example as a guideline. One possible simple
choice is k = 3 and

(21) r = (1, 2, 4, 7, 3, 5) and w = (4, 7, 1, 2, 3, 5).

Step 1: Decomposition of ν(S−
ℓ1,j1,...,ℓ2k,j2k

) into three terms.

Applying Proposition 3.7, item ii), we obtain that

(22) ν
(

S−
ℓ1,j1,...,ℓ2k,j2k

)

= ν (Sℓ1,j1,...,ℓ2k,j2k
) + O(2k + 1).

Let us analyze now the term ν(Sℓ1,j1,...,ℓ2k,j2k
): by the very definition of

Sℓ1,j1,...,ℓ2k,j2k
, we have

(23) ν (Sℓ1,j1,...,ℓ2k,j2k
) = ν

(

2k
∏

i=1

Rℓi,ji

)

.

Furthermore, we have

ν (Sℓ1,j1,...,ℓ2k,j2k
) =

1

N
ν





N
∑

k=1

σℓ1
k σj1

k

∏

2≤i≤2k

Rℓi,ji





= ν



ǫℓ1ǫj1

∏

2≤i≤2k

Rℓi,ji



 ,

(24)

where the last step has just been obtained as an easy consequence of
the symmetry property among sites. Observe also that, since r is a

permutation of w, then
∏2k

i=1 ǫℓiǫji = 1 and we have

ǫℓ1ǫj1

2k
∏

i=1

ǫℓiǫji = ǫℓ1ǫj1 and ǫℓ1ǫj1

2k
∏

i=1

ǫℓiǫji =
∏

2≤i≤2k

ǫℓiǫji ,
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which yields

(25) ǫℓ1ǫj1 =
∏

2≤i≤2k

ǫℓiǫji .

By plugging the expressions (24) and (25) into (22), we thus get

ν
(

S−
ℓ1,j1,...,ℓ2k,j2k

)

= ν



ǫℓ1ǫj1

∏

2≤i≤2k

Rℓi,ji



+ O(2k + 1)

= ν (Sℓ2,j2,...,ℓ2k,j2k
) + O(2k + 1).

Repeating now the process of decomposition of equation (17), we obtain

(26) ν
(

S−
ℓ1,j1,...,ℓ2k,j2k

)

= K1 + K2 + K3,

where

K1 = ν
(

S−
ℓ2,j2,...,ℓ2k,j2k

)

,(27)

K2 =
1

N

∑

i2≤a1<···<a2k−2≤i2k

ν
(

S−
ℓa1 ,ja1 ,...,ℓa2k−2

,ja2k−2

)

,(28)

K3 =

2k−3
∑

u=1

1

N2k−u−1

∑

i2≤a1<···<au≤i2k

ν
(

S−
ℓa1 ,ja1 ,...,ℓau ,jau

)

+
1

N2k−1
.(29)

We will now estimate each term K1, K2 and K3 separately.

Step 2: We will show that

(30) K1 = β2ν (Sℓ1,j1,...,ℓ2k,j2k
) + O(2k + 1).

Indeed, performing a Taylor expansion for K1, we have

(31) K1 = ν0

(

S−
ℓ2,j2,...,ℓ2k,j2k

)

+ ν′
0

(

S−
ℓ2,j2,...,ℓ2k,j2k

)

+
1

2
ν

(2)
ξ

(

S−
ℓ2,j2,...,ℓ2k,j2k

)

,

for a certain ξ ∈ [0, 1]. Moreover, it is easily seen from Proposition 3.5
that the first term, ν0(S

−
ℓ2,j2,...,ℓ2k,j2k

), vanishes, and according to Propo-

sition 3.3, item (d), the last term of relation (31) is of order O(2k + 1).
Eventually, by Propositions 2.1 and 3.5, it is readily checked that

ν′
0

(

S−
ℓ2,j2,...,ℓ2k,j2k

)

= β2ν0

(

S−
ℓ1,j1,...,ℓ2k,j2k

)

,
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and thanks to Proposition 3.7, item ii) it follows that

ν′
0

(

S−
ℓ2,j2,...,ℓ2k,j2k

)

= β2ν (Sℓ1,j1,...,ℓ2k,j2k
) + O(2k + 1),

which gives our claim (30).

Step 3: We will prove that K3 = O(2k + 1).

Notice that for each a1, . . . , au we have

1

N2k−u−1
ν
(

S−
ℓa1 ,ja1 ,...,ℓau ,jau

)

= O(2(2k − u − 1) + u),

where we have just applied Proposition 3.3. Since 2(2k − u − 1) + u is
greater than 2k + 1 whenever u ≤ 2k − 3, it follows that

(32) K3 = O(2k + 1).

Step 4: Study of K2.

We claim that

(33) K2 =

{

1
N ν
(

Sl̃1,k̃1,...,l̃2k−2,k̃2k−2

)

+ O(2k + 1), if r ∼ w;

O(2k + 1), otherwise,

where (l̃1, k̃1, . . . , l̃2k−2, k̃2k−2) = (r̃, w̃) for a certain couple with r̃, w̃ ∈
Ω2(k−1) satisfying r̃ ∼ w̃.

Indeed, using Proposition 3.7, for any family (a1, . . . , a2k−2) such that
i2 ≤ a1 < · · · < a2k−2 ≤ i2k, we have

(34)
1

N
ν
(

S−
ℓa1 ,ja1 ,...,ℓa2k−2

,ja2k−2

)

=
1

N
ν0

(

S−
ℓa1 ,ja1 ,...,ℓa2k−2

,ja2k−2

)

+ O(2k + 1).

In the case r ≁ w, since r ∈ Ω2k, there exists an index i ∈ {1, . . . , 2k}
such that for all u ∈ {1, . . . , 2k}\{i}, we have (ℓi, ji) 6= (ℓu, ju) (remem-
ber that, by definition, the l’s and j’s are the elements of r and w). We
denote this index i by i1. In this case the index i2 such that the prod-

uct
∏2k−2

v=1 ǫℓav
ǫjav

= ǫℓi1
ǫji1

ǫℓi2
ǫji2

satisfies {ǫℓi1
, ǫji1

} ∩ {ǫℓi2
, ǫji2

} 6=
{ǫℓi1

, ǫji1
}. Thus, applying Proposition 3.5, the first term on the right

side in (34) vanishes and we obtain

1

N
ν
(

S−
ℓa1 ,ja1 ,...,ℓa2k−2

,ja2k−2

)

= O(2k + 1).
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On the other hand, in the case r ∼ w, there exists a unique se-
quence (â1, . . . , â2k−2) which satisfies â1 < â2 < · · · < â2k−2 and

2k−2
∏

i=1

ǫℓâi
ǫjâi

= 1.

Notice that in our example (21), we have (â1, â2, â3, â4) = (2, 3, 4, 6).
Then it is easily seen, with the same kind of arguments as in the previous
steps, that

K2 =
1

N
ν
(

S−
ℓâ1

,jâ1
,...,ℓâ2k−2

,jâ2k−2

)

+ O(2k + 1).

Thanks to Proposition 3.7, we thus get

K2 =
1

N
ν
(

Sℓâ1
,jâ1

,...,ℓâ2k−2
,jâ2k−2

)

+ O(2k + 1),

and we remark that (ℓâ1 , jâ1 , . . . , ℓâ2k−2
, jâ2k−2

) = (r̃, w̃) with r̃, w̃ ∈
Ω2k−2 and r̃ ∼ w̃, since r ∼ w (in our example (21), r = w = (4, 7, 3, 5)).
Our claim is now proved.

Step 5: Conclusion.

Plugging (30), (32) and (33) into (26), and invoking Proposition 3.7,
item ii), we obtain, for any β < 1,

ν
(

S−
ℓ1,j1,...,ℓ2k,j2k

)

=

{

1
(1−β2)N ν

(

Sl̃1,k̃1,...,l̃2k−2,k̃2k−2

)

+O(2k+1), if r∼w;

O(2k + 1), otherwise,

and equation (20) follows now easily by induction on k. Indeed, the
case k = 1 has been shown by Talagrand in [8], under the following
form: for β < 1, we have

ν(R2
1,2) =

1

N(1 − β2)
+ O(3).

The induction is now a trivial fact.

As a consequence of the previous properties, we can evaluate the
following general term:

Proposition 3.9. Let (ℓ1, j1, . . . , ℓk, jk) ∈ Ω2k. Then, for all β < 1, we
have

(35)
1

k!
ν

(k)
0

(

S−
ℓ1,j1,...,ℓk,jk

)

=

(

β2

N(1 − β)2

)k

+ O(2k + 1).
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Proof: Applying Proposition 3.6 with f =S−
ℓ1,j1,...,ℓk,jk

and w=(ℓ1, j1, . . .,

ℓk, jk), we obtain that

ν
(k)
0

(

S−
ℓ1,j1,...,ℓk,jk

)

= k!β2kν0

(

S−
ℓ1,j1,...,ℓk,jk

S−
ℓ1,j1,...,ℓk,jk

)

+ β2k
∑

r≁w

c(r)ν0

(

S−
ℓ1,j1,...,ℓk,jk

S−
r1,r2,...,r2k−1,r2k

)

.

Hence, according to Proposition 3.8, we can conclude that

1

k!
ν

(k)
0

(

S−
ℓ1,j1,...,ℓk,jk

)

= β2k

(

1

N(1 − β)2

)k

+ O(2k + 1).

Eventually, we will end the section by the evaluation of the first term
in the expansion of ν (Sℓ1,j1,...,ℓk,jk

):

Lemma 3.10. Let r = (ℓ1, j1, . . . , ℓk, jk) ∈ Ω2k. Then, for all β < 1,
the following relation holds true:

ν (Sℓ1,j1,...,ℓk,jk
) =

1

Nk

(

1

1 − β2

)k

+ O(2k + 1).

Proof: First remark that Sℓ1,j1,...,ℓk,jk
=
∏k

i=1 Sℓi,ji , and thanks to the

relation Sl,l′ = S−
l,l′ + 1

N , we obtain

Sℓ1,j1,...,ℓk,jk
=

k
∑

u=1

∑

1≤i1<···<iu≤k

1

Nk−u

u
∏

v=1

S−
ℓiv ,jiv

+
1

Nk

=
k
∑

u=1

∑

1≤i1<···<iu≤k

1

Nk−u
S−

ℓi1 ,ji1 ,...,ℓiu ,jiu
+

1

Nk
.

(36)

Hence

(37) ν(Sℓ1,j1,...,ℓk,jk
)=

k
∑

u=1

∑

1≤i1<···<iu≤k

1

Nk−u
ν
(

S−
ℓi1 ,ji1 ,...,ℓiu ,jiu

)

+
1

Nk
.

Notice that r ∈ Ω2k iff for any u ≤ k and any sequence (i1, . . . , iu)
such that 1 ≤ i1 < · · · < iu ≤ k, we have (ℓi1 , ji1 , . . . , ℓiu , jiu) ∈ Ω2u.
Whence, expanding the Taylor series, we get

1

Nk−u
ν
(

S−
ℓi1 ,ji1 ,...,ℓiu ,jiu

)

=
1

Nk−u

u
∑

v=0

1

v!
ν

(v)
0

(

S−
ℓi1 ,ji1 ,...,ℓiu ,jiu

)

+
1

Nk−u

1

(u + 1)!
ν

(u+1)
ξ

(

S−
ℓi1 ,ji1 ,...,ℓiu ,jiu

)

,

(38)
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for a certain ξ ∈ [0, 1]. Now, Invoking Proposition 3.5, all the derivative
terms of order smaller than u vanish, and by Proposition 3.3, item (d),
the error term can be estimated as follows:

1

Nk−u

1

(u + 1)!
ν

(u+1)
ξ

(

S−
ℓi1 ,ji1 ,...,ℓiu ,jiu

)

=O(2(k−u)+2u+1)=O(2k+1).

Hence, we get the following expression:

(39)
1

Nk−u
ν
(

S−
ℓi1 ,ji1 ,...,ℓiu ,jiu

)

=
1

u!Nk−u
ν

(u)
0

(

S−
ℓi1 ,ji1 ,...,ℓiu ,jiu

)

+ O(2k + 1).

On the other hand, the derivative term of order u can be evaluated by
means of Proposition 3.9: since (ℓi1 , ji1 , . . . , ℓiu , jiu) ∈ Ω2u, by plug-
ging (35) into (39), we get

1

Nk−u
ν
(

S−
ℓi1 ,ji1 ,...,ℓiu ,jiu

)

=
1

Nk−u

1

u!

[

u!

(

β2

N(1−β2)

)u

+O(2u+1)

]

=
1

Nk

(

β2

1 − β2

)u

+ O(2k + 1).

(40)

Moreover,

Card {(i1, . . . , iu)|1 ≤ i1 < · · · < iu ≤ k} =

(

k

u

)

,

and thus we can recast equation (37) into

ν (Sℓ1,j1,...,ℓk,jk
) =

k
∑

u=1

1

Nk

(

k

u

)(

β2

(1 − β2)

)u

+
1

Nk
+ O(2k + 1)

=
1

Nk

(

1 +
β2

1 − β2

)k

+ O(2k + 1).

This completes the proof.

4. R-systems and graphs

In this section, we will make an essential step towards the evaluation of
multiple overlaps of the form R1,...,s defined at (2). Indeed, we will prove
an important preliminary result involving the functional U−

k S−
ℓ1,j1,...,ℓm,jm

,

where U−
k = ǫ1ǫ2 . . . ǫ2kR−

1,2,...,2k. We will also evaluate ν(Sℓ1,j1,...,ℓm,jm)

for some special cases of indexes (ℓ1, j1, . . . , ℓm, jm). More specifically,
this section is devoted to the proof of the following result:
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Proposition 4.1. Let k be a positive integer, β < 1 and recall that
Ck has been defined at (8). Then, for any m ≥ k and (ℓ1, j1, . . . , ℓm, jm)∈
Ck, we have:

i) ν0(U
−
k S−

ℓ1,j1,...,ℓm,jm
) = ν(Sℓ1,j1,...,ℓm,jm) + O(2k + 1).

ii) ν(Sℓ1,j1,...,ℓm,jm) = O(2k + 1) if m ≥ k + 1.

Notice that the proof of this result will require two kind of tools: first
a graph representation that will help us to identify the main contribution
in our expansions, and then the introduction of some families of functions
whose role is to avoid a cumbersome recursive procedure.

4.1. Graph tools: Proof of Proposition 4.1, item (ii).

We will include in fact Proposition 4.1, item (ii) into a more general
statement:

Proposition 4.2. Consider a positive integer k and β < 1. Assume
that the sequence (ℓ1, j1, . . . , ℓm, jm) belongs to Ck with m ≥ k +1. Then
the following estimations hold true:

i) ν(Sℓ1,j1,...,ℓm,jm) = O(2k + 1).

ii) For all u ≥ 1 and 1 ≤ i1 < · · · < iu ≤ m, we have

1

Nm−u
ν(S−

ℓi1 ,ji1 ,...,ℓiu ,jiu
) = O(2k + 1).

iii) For all u ≥ 1 and 1 ≤ i1 < · · · < iu ≤ m, we have

1

Nm−u
ν(Sℓi1 ,ji1 ,...,ℓiu ,jiu

) = O(2k + 1).

Proof: Let (ℓ1, j1, . . . , ℓm, jm) ∈ Ck. Using the same kind of calculation
as in relation (36), we obtain

(41) ν(Sℓ1,j1,...,ℓm,jm) =

m
∑

u=1

∑

1≤i1<···<iu≤m

1

Nm−u
ν(S−

ℓi1 ,ji1 ,...,ℓiu ,jiu
)

+
1

Nm
.
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For each u ≤ m and 1 ≤ i1 < · · · < iu ≤ m, let us expand the
term ν(S−

ℓi1 ,ji1 ,...,ℓiu ,jiu
) up to an order v ∈ N. We get

(42) ν(S−
ℓi1 ,ji1 ,...,ℓiu ,jiu

) =

v
∑

r=1

1

r!
ν

(r)
0 (S−

ℓi1 ,ji1 ,...,ℓiu ,jiu
)

+
1

(v + 1)!
ν

(v+1)
ζ (S−

ℓi1 ,ji1 ,...,ℓiu ,jiu
)

for a certain ζ ∈ R. Let us admit for the moment the following proposi-
tion, whose proof will require the introduction of the graph tools men-
tioned above:

Proposition 4.3. Given a positive integer k and (ℓ1, j1, . . . , ℓm, jm) ∈
Ck, the following holds true for any u ≥ 1 and 1 ≤ i1 < · · · < iu ≤ m:

i) There exists a positive integer

â = â(ℓi1 , ji1 , . . . , ℓiu , jiu)

such that
∏u

p=1 ǫℓip
ǫjip

= ǫc1 . . . ǫc2â
, where all the indexes c′s are

different.

ii) u − â is bounded by m − k.

Let us apply now this last proposition: set v = â in equation (42).
Then, invoking Proposition 3.5, item (i), it is easily seen that

ν(S−
ℓi1 ,ji1 ,...,ℓiu ,jiu

) =
1

â!
ν

(â)
0 (S−

ℓi1 ,ji1 ,...,ℓiu ,jiu
)

+
1

(â + 1)!
ν

(â+1)
ζ (S−

ℓi1 ,ji1 ,...,ℓiu ,jiu
).

Furthermore, according to Proposition 3.3, item (d), ν(S−
ℓi1 ,ji1 ,...,ℓiu ,jiu

)

is of order O(â + u). We thus get the following estimation:

1

Nm−u
ν(S−

ℓi1 ,ji1 ,...,ℓiu ,jiu
) = O (2m − (u − â)) .

Eventually, thanks to item ii) in Proposition 4.3, and since we have
assumed m ≥ k + 1, we get

2m − (u − â) ≥ 2m − (m − k) = m + k ≥ 2k + 1,

and hence

(43)
1

Nm−u
ν(S−

ℓi1 ,ji1 ,...,ℓiu ,jiu
) = O(2k + 1),

which proves item ii) of our Proposition 4.2. Moreover, putting to-
gether (43) and (41), item i) of Proposition 4.2 is also easily shown.
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In order to obtain iii) in Proposition 4.2 we perform again the same
expansion as in (36), and we get

1

Nm−u
ν(Sℓi1 ,ji1 ,...,ℓiu ,jiu

)

=
1

Nm−u

u
∑

q=0

∑

i1≤a1<···<aq≤iu

1

Nu−q
ν(S−

ℓa1 ,ja1 ,...,ℓaq ,jaq
)

= O(2k + 1),

where we used ii) for each q and (a1, . . . , aq) and m ≥ k + 1.

The remainder of this section will now be devoted to prove Proposi-
tion 4.3, starting with item (i), for which we will use the graph definitions
of Section 2.2:

Proposition 4.4. Let k, u be two positive integers such that u ≤ k. Let
also (ℓ1, j1, . . . , ℓm, jm) ∈ Ck with m ≥ k + 1 and 1 ≤ i1 < · · · < iu ≤ m.

Consider g = G((ℓ1, j1, . . . , ℓm, jm)) and h , G((ℓi1 , ji1 , . . . , ℓiu , jiu).
Then

i) h belongs to Su(g).

ii) There exists an integer t such that
∏u

i=1 ǫℓii
ǫjii

= ǫc1 . . . ǫct for any

value of ǫ, where all the indexes (c1, . . . , ct) are different. Further-
more, Od(h) = t

2 .

Remark 4.5. Item i) justifies our interest for the class Su(g), while
item ii) implies item i) of Proposition 4.3, with â(ℓi1 , . . . , jiu) = Od(h).

Proof of Proposition 4.4: i) This is a straightforward consequence of the
definitions given at Section 2.2.

ii) The quantities ǫci are just the elements which appear an odd number
of times in

∏u
p=1 ǫℓip

ǫjip
, and as a consequence,

Od(h) =
∑

i∈I; Nh(i) is odd

1

2
=

t

2
.

Given a graph g such that N(g) = m, another quantity of interest for
us will be an upper bound on maxh∈Su(g) u − Od(h). Define then, for
each u ∈ {1, . . . , m}, the function

Mg
u : Su(g) −→ N

h 7−→ u − Od(h).
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In order to simplify the notations we will use during the proof of the
next proposition, we define an operation with graphs that we call the
juxtaposition: given two graphs g1 = (I1, E1, Υ1) and g2 = (I2, E2, Υ2),
we denote by g = g1 + g2 the graph defined by g = (I, E, Υ), such that
I = I1 ∪ I2, E = E1 ∪ E2 and Υ = Υ1 + Υ2 (we consider that Υ1(e)
and Υ2(e) are equal to zero when they are not defined in Υ1 and Υ2

separately).

Recall that the class of graphs Gk is defined by relation (8). Then the
next lemma asserts an inner characteristic of monotonicity for Gk.

Lemma 4.6. Given k ∈ N and a graph g = (I, E, Υ) ∈ Gk, the following
holds true:

i) maxh∈Su(g) Mg
u is increasing with u.

ii) maxu≤N(g) maxh∈Su(g) Mg
u ≤ N(g) − k.

Remark 4.7. Item (ii) of Proposition 4.3 is an easy consequence of
item (ii) in Lemma 4.6.

Proof of Lemma 4.6: i) Let h = (I1, E1, Υ1) ∈ Su(g) such that u < N(g)
and

max
h∈Su(g)

Mg
u = u − Od(h).

Let e = (p, q) ∈ E \ E1 (e exists because u < m). One defines h1 =

({p, q}, {e}, Υ2) such that Υ2(e) = 1, and let h̃ be the graph h + h1.

Then h̃ ∈ Su+1 because N(h̃) = N(h) + N(h1) = u + 1, I1 ∪ {p, q} ⊆ I,

E1 ∪ {e} ⊆ E and Υ1(e) + Υ2(e) ≤ Υ(e). We will show that Mg
u+1(h̃) ≥

Mg
u(h) which, in turn, implies statement i).

There are three possible cases for p and q:

• p, q /∈ I1.

In this case Nh̃(p) = Nh̃(q) = 1, and then Od(h̃) = Od(h)+ 1
2 + 1

2 ,

which gives Mg
u+1(h̃) = u + 1 − (Od(h) + 1) = Mg

u(h).

• p ∈ I1, q /∈ I1 (or q ∈ I1, p /∈ I1).

One has Nh̃(q) = 1, and if Nh̃(p) is odd, then Od(h̃) = Od(h) +
1
2 + 1

2 and thus one obtains the same result than in the previous

item. If Nh̃(p) is even, which gives Od(h̃) = Od(h) + 1
2 − 1

2 then

Mg
u+1(h̃) = u + 1 − Od(h) > Mg

u(h).
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• p, q ∈ I1.

If both Nh̃(p) and Nh̃(q) are odd, then Od(h̃) = Od(h) + 1; if

Nh̃(p) is even and Nh̃(q) is odd, then Od(h̃) = Od(h), and these
two cases have already been studied. In the case where both Nh̃(p)

and Nh̃(q) are even, then Od(h̃) = Od(h) − 1, and Mg
u+1(h̃) =

u + 1 − (Od(h) − 1) > Mg
u(h). The proof of point i) is now clear.

The statement ii) follows from item i), because maxu maxh∈Su(g) Mg
u =

Mg
m = m− k, where in the last step, we have used the fact that g is the

only subgraph of g with m edges such that g ∈ Gk.

Let us recall that, at that point, we have proved Proposition 4.3, and
thus Proposition 4.1, item (ii).

4.2. R-systems: Proof of Proposition 4.1, item (i).

The aim of this subsection is to finish the proof of Proposition 4.1,
item (i), which amounts to prove

(44) ν0(U
−
k S−

ℓ1,j1,...,ℓm,jm
) = ν(Sℓ1,j1,...,ℓm,jm) + O(2k + 1).

The general strategy we will use here is a backward induction principle
on m. However, in order to simplify the cumbersome procedure one is
faced with at first sight, we will introduce a family of function that we
call R-systems. Let us delve now into the details of the proof:

Step 1: First step of the induction.

In the case m ≥ 2k + 2, thanks to Schwarz inequality and Proposi-
tion 3.2, we easily get

ν0(U
−
k S−

ℓ1,j1,...,ℓm,jm
) ≤ K(β, m)ν

(

(

S−
ℓ1,j1,...,ℓm,jm

)2
)

1
2

= O(m)

for a positive constant K(β, m), where in the last step, we have used
Proposition 3.3. The statement follows because m ≥ 2k + 2 > 2k + 1
and Proposition 4.2 yields ν(Sℓ1,j1,...,ℓm,jm) = O(2k + 1). Whence the

difference ν0(U
−
k S−

ℓ1,j1,...,ℓm,jm
)−ν(Sℓ1,j1,...,ℓm,jm) is also O(2k+1), which

finishes the proof.

Step 2: We will start our induction procedure. Let us pick a m < 2k+2,
and we assume the result holds true for all r > m. First, we will show
that

ν0(U
−
k S−

ℓ1,j1,...,ℓm,jm
) = ν(U−

k S−
ℓ1,j1,...,ℓm,jm

) + O(2k + 1).
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Indeed, performing an inverse Taylor expansion, we get, for a certain ζ ∈
[0, 1],

(45) ν0(U
−
k S−

ℓ1,j1,...,ℓm,jm
) = ν(U−

k S−
ℓ1,j1,...,ℓm,jm

)

−
k
∑

r=1

1

r!
ν

(r)
0 (U−

k S−
ℓ1,j1,...,ℓm,jm

) − 1

(k + 1)!
ν

(k+1)
ζ (U−

k S−
ℓ1,j1,...,ℓm,jm

).

Let us bound now the last term of this inequality: applying Schwarz’
inequality and Propositions 3.2 and 3.3, we have

ν
(k+1)
ζ (U−

k S−
ℓ1,j1,...,ℓm,jm

) ≤ 1

N
k+1
2

ν

(

(

U−
k S−

ℓ1,j1,...,ℓm,jm

)2
)

1
2

≤ 1

N
k+1
2

ν

(

(

S−
ℓ1,j1,...,ℓm,jm

)2
)

1
2

= O(2k + 1),

according to the fact that m ≥ k. Consequently, equation (45) becomes

ν0(U
−
k S−

ℓ1,j1,...,ℓm,jm
) = ν(U−

k S−
ℓ1,j1,...,ℓm,jm

)

−
k
∑

r=1

1

r!
ν

(r)
0 (U−

k S−
ℓ1,j1,...,ℓm,jm

) + O(2k + 1).

However, Proposition 3.1 asserts that each term

ν
(r)
0 (U−

k S−
ℓ1,j1,...,ℓm,jm

)

can be evaluated as a finite sum of terms of the form

c(β, r)ν0(U
−
k S−

ℓ1,j1,...,ℓm,jm
S−

ℓ1,j1,...,ℓr,jr
),

which can be rewritten as

c(β, r)ν0(U
−
k S−

ℓ1,j1,...,ℓm,jm
S−

ℓ1,j1,...,ℓr,jr
)

= c(β, r)ν0(U
−
k S−

ℓ1,j1,...,ℓm+r,jm+r
).

(46)

By Proposition 3.4, if (ℓ1, j1, . . . , ℓm+r, jm+r) /∈ Ck, the expression (46)
vanishes. Otherwise, by backward induction hypothesis, we get

c(β, r)ν0(U
−
k S−

ℓ1,j1,...,ℓm+r,jm+r
) = c(β, r)ν(Sℓ1,j1,...,ℓm+r,jm+r )+O(2k+1).

Thus, since r ≥ 1, it is readily checked from Proposition 4.2 that

(47) ν0(U
−
k S−

ℓ1,j1,...,ℓm,jm
) = ν(U−

k S−
ℓ1,j1,...,ℓm,jm

) + O(2k + 1),

which was the claim to be proved.
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Step 3: Decomposition of ν0(U
−
k S−

ℓ1,j1,...,ℓm,jm
).

Set Uk = ǫ1 . . . ǫ2kR1...2k. Then, obviously, U−
k = − 1

N + Uk. Using
this fact, and performing the same kind of computations as in (36), we
obtain

ν(U−
k S−

ℓ1,j1,...,ℓm,jm
)=

m
∑

u=1

∑

1≤i1<···<iu≤m

(−1)m−u+1

Nm−u+1
ν(Sℓi1 ,ji1 ,...,ℓiu ,jiu

)

+
1

Nm+1

+ ν(UkSℓ1,j1,...,ℓm,jm)

+
m−1
∑

u=1

∑

1≤i1<···<iu≤m

(−1)m−u

Nm−u
ν(UkSℓi1 ,ji1 ,...,ℓiu ,jiu

).

Furthermore, thanks to Proposition 4.2, we obtain

ν(U−
k S−

ℓ1,j1,...,ℓm,jm
) = ν(UkSℓ1,j1,...,ℓm,jm)

+

m−1
∑

u=1

∑

1≤i1<···<iu≤m

(−1)m−u

Nm−u
ν(UkSℓi1 ,ji1 ,...,ℓiu ,jiu

) + O(2k + 1).

Now, the fact that (ℓ1, j1, . . . , ℓm, jm) ∈ Ck and the symmetry property
yield

ν
(

UkSℓ1,j1,...,ℓm,jm

)

= ν



ǫ1 . . . ǫ2kR1,...,2k

∏

i≤m

ǫℓiǫjiRℓi,ji





= ν



R1,...,2k

∏

i≤m

Rℓi,ji





= ν



ǫ1 . . . ǫ2k

∏

i≤m

Rℓi,ji





= ν





∏

i≤m

ǫℓiǫjiRℓi,ji





= ν
(

Sℓ1,j1,...,ℓm,jm

)

.
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Thus

(48) ν(U−
k S−

ℓ1,j1,...,ℓm,jm
) = ν(Sℓ1,j1,...,ℓm,jm)

+
m−1
∑

u=1

∑

1≤i1<···<iu≤m

(−1)m−u

Nm−u
ν(UkSℓi1 ,ji1 ,...,ℓiu ,jiu

) + O(2k + 1).

In order to finish our decomposition, let us introduce a little more no-
tation: for 1 ≤ i1 < · · · < iu ≤ m, set α = (ℓi1 , ji1 , . . . , ℓiu , jiu) and we
define I as the set of all possible α when u varies in {1, . . . , m− 1}. For

any α ∈ I, denote by G̃α the function defined by

G̃α =
(−1)m−u

Nm−u
ν(UkSℓi1 ,ji1 ,...,ℓiu ,jiu

).

Putting together equations (47) and (48) we have proved that

(49) ν0(U
−
k S−

ℓ1,j1,...,ℓm,jm
) = ν(Sℓ1,j1,...,ℓm,jm) +

∑

α∈I

G̃α + O(2k + 1).

Step 4: Pick a given 1 ≤ u ≤ m − 1. For α = (ℓi1 , . . . , jiu) we will write
α̂ ⊆ α if α̂ is a subset of indexes contained in α. A generic element α̂ ⊆ α
will be of the form α̂ = (ℓı̂1 , . . . , jı̂v ). We will show that

(50) G̃α =
∑

α̂∈Iα

Gα̂ν0(U
−
k S−

ℓı̂1
,jı̂1

,...,ℓı̂v ,jı̂v
) + O(2k + 1),

where for each α̂, Gα̂ is a coefficient of order O(1), and where Iα is a set
of indexes which will be defined later on. Indeed, repeating the process
that lead to (36) and using Uk = 1

N + U−
k , we get

1

Nm−u
ν(UkSℓi1 ,ji1 ,...,ℓiu ,jiu

)

=
1

Nm
ν(U−

k )

+
1

Nm−u

u
∑

v=1

∑

α̂⊆α

1

Nu−v
ν(U−

k S−
ℓı̂1

,jı̂1
,...,ℓı̂v ,jı̂v

) +
1

Nm−u+u+1

+
1

Nm−u

u
∑

v=1

∑

α̂⊆α

1

Nu−v+1
ν(S−

ℓı̂1
,jı̂1

,...,ℓı̂v ,jı̂v
).

(51)



190 S. de Carvalho Bezerra, S. Tindel

Let us analyze now some of the terms in the sum above. First, it is easily
seen that

(52)
1

Nm
ν(U−

k ) = O(2k + 1).

On the other hand, a first idea one could have, in order to handle the
term N−(m−v+1)ν(S−

ℓı̂1
,jı̂1

,...,ℓı̂v ,jı̂v
) for 1 ≤ v ≤ u ≤ m − 1, would be to

apply Proposition 4.2. However, notice that we have only assumed m≥k,
while the latter proposition requires m ≥ k + 1. This induces us to
use an additional trick: the tuple (ℓı̂1 , jı̂1 , . . . , ℓı̂v , jı̂v ) has been gener-
ated from (ℓi1 , ji1 , . . . , ℓiu , jiu). However, since u ≤ m − 1, we could
also have generated (ℓı̂1 , jı̂1 , . . . , ℓı̂v , jı̂v ) from the following sequence of
size 2(m + 1) in Ck: take all the couples in (ℓi1 , ji1 , . . . , ℓiu , jiu) except
for one, say (ℓi∗ , ji∗), and assume (ℓi∗ , ji∗) 6∈ (ℓı̂1 , jı̂1 , . . . , ℓı̂v , jı̂v ). Now,
we will split (ℓi∗ , ji∗) into two couples (ℓi∗ , 1) and (1, ji∗), and form
the desired sequence by aggregating all these couples. As an illustrat-
ing example of this procedure, take k = m = 3, (ℓi1 , ji1 , . . . , ℓiu , jiu) =
(1, 3, 2, 4, 5, 6) ∈ C3, u = v = 2, and (ℓı̂1 , jı̂1 , . . . , ℓı̂v , jı̂v ) = (1, 3, 5, 6).
Then, this last sequence could have been generated as well from

(1, 3, 5, 6, 2, 1, 4, 1) ∈ C3.

Now, Proposition 4.2, item (ii) can be applied to the new sequence of
size 2(m+1) we have just constructed, and thus, for each 1 ≤ u ≤ m−1,
α̂ ⊂ α we get:

(53)
1

Nm−v+1
ν(S−

ℓı̂1
,jı̂1

,...,ℓı̂v ,jı̂v
) = O(2k + 1).

Hence, plugging (52) and (53) into (51), we obtain:

(54)
1

Nm−u
ν(UkSℓi1 ,ji1 ,...,ℓiu ,jiu

)

=

u
∑

v=1

∑

α̂⊆α

1

Nm−v
ν(U−

k S−
ℓı̂1

,jı̂1
,...,ℓı̂v ,jı̂v

) + O(2k + 1).

Now, for each α̂ = (ℓı̂1 , jı̂1 , . . . , ℓı̂v , jı̂v ) in equation (54) we perform a
Taylor expansion, which gives

ν(U−
k S−

ℓı̂1
,jı̂1

,...,ℓı̂v ,jı̂v
) =

2k
∑

r=0

1

r!
ν

(r)
0 (U−

k S−
ℓı̂1

,jı̂1
,...,ℓı̂v ,jı̂v

)

+
1

(2k + 1)!
ν

(2k+1)
ζ (U−

k S−
ℓı̂1

,jı̂1
,...,ℓı̂v ,jı̂v

),
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and from Schwarz inequality and Propositions 3.2 and 3.3,

ν(U−
k S−

ℓı̂1
,jı̂1

,...,ℓı̂v ,jı̂v
) =

2k
∑

r=0

1

r!
ν

(r)
0 (U−

k S−
ℓı̂1

,jı̂1
,...,ℓı̂v ,jı̂v

) + O(2k + 1).

Thanks to Proposition 3.1, we get

(55) ν(U−
k S−

ℓı̂1
,jı̂1

,...,ℓı̂v ,jı̂v
)

=

2k
∑

r=0

∑

(ℓı̃1 ,...,jı̃r )∈Jα̂

c(α̂, r, β)ν0(U
−
k S−

ℓı̂1
,jı̂1

,...,ℓı̂v ,jı̂v
S−

ℓı̃1 ,jı̃1 ,...,ℓı̃r ,jı̃r
)

+ O(2k + 1),

where we denote by Jα̂ the (finite) set of all possible values of (ℓı̃1 , . . . , jı̃r )
given by Proposition 3.1. Hence, putting together equations (55) and
(54), we obtain:

G̃α =
(−1)m−u

Nm−u
ν(UkSℓi1 ,ji1 ,...,ℓiu ,jiu

)

=
u
∑

v=1

∑

α̂⊆α

2k
∑

r=0

∑

α̃∈Jα̂

(−1)m−u

Nm−v
cν0(U

−
k S−

ℓı̂1
,jı̂1

,...,ℓı̂v ,jı̂v ,ℓı̃1 ,jı̃1 ,...,ℓı̃r ,jı̃r
)

+ O(2k + 1),

which proves our claim (50), by just setting

Iα = {α∗ = (̂ı1, ı̂1, . . . , ı̂v, ı̂v, ı̃1, ı̃1, . . . , ı̃r, ı̃r) | α̂ ⊆ α and α̃ ∈ Jα̂},

and Gα∗ = (−1)m−u

Nm−v . As v < m clearly, we also obtain Gα∗ = O(1).

Step 5: Conclusion.

Steps 3 and 4 lead us to the following

Definition 4.8. Given a positive integer k, a collection of functions
(Tα)α∈I is called a R-system iff for each α ∈ I there exists a finite
set Iα ⊆ I and functions Hα, (Gα1)α1∈Iα such that:

• Hα = O(2k).

• For all α1 ∈ Iα, Gα1 = O(1).

• Tα = Hα +
∑

α1∈Iα
Tα1Gα1 + O(2k + 1).
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We remark that, putting together relations (49) and (50), we get that

ν0(U
−
k S−

ℓ1,j1,...,ℓm,jm
) = ν(Sℓ1,j1,...,ℓm,jm)

+
∑

α∈I

∑

α̂∈Iα

Gα̂ν0

(

UkS−
α̂

)

+ O(2k + 1),

where Gα̂ = O(1). Thus, if we associate to each α = (ℓ1, j1, . . . , ℓm, jm) ∈
Ck the function Tα , ν0(U

−
k S−

ℓ1,j1,...,ℓm,jm
) and Hα , ν(Sℓ1,j1,...,ℓm,jm)

then we have that (Tα)α∈Ck
is a R-system. Hence, according to the

lemma below, the proof of (44), and thus of Proposition 4.1, item i) will
be complete.

Lemma 4.9. Given a R-system of functions (Tα)α∈I then for each α ∈ I
we have

i) Tα = Hα + O(2k + 1).

ii) In particular, Tα = O(2k).

Proof: By Definition 4.8 for each α ∈ I one has

Tα = Hα +
∑

α1∈Iα

Tα1Gα1 + O(2k + 1).

If we use Definition 4.8 for each α1 ∈ Iα0 then there exists a set Iα1 such
that

(56) Tα =Hα+
∑

α1∈Iα



Hα1 +
∑

α2∈Iα1

Tα2Gα2 + O(2k + 1)



Gα1+O(2k+1).

However, by Definition 4.8 we can conclude that Hα1Gα1 = O(2k + 1),
and hence (56) becomes:

Tα = Hα +
∑

α1∈Iα

∑

α2∈Iα1

Tα2Gα2Gα1 + O(2k + 1).

Repeating this process 2k times, we obtain:

Tα = Hα+
∑

α1∈Iα

∑

α2∈Iα1

. . .
∑

αk+1∈Iαk

Tα2k+2
Gα2k+2

. . . Gα2Gα1 +O(2k+1).

Using Definition 4.8, each term Tαk+1
Gαk+1

. . . Gα2Gα1 is of order O(2k+
2), concluding the proof. Item ii) is a trivial consequence of item i).
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5. Expansion for the second moment

We conclude in this section the proof of our asymptotic expansions (4)
and (5).

Proof of Theorem 1.2: We first make use of the definition of R1,...,s and
the symmetry property among sites, which yield

ν
(

R2
1,2,...,s

)

=
1

N
ν

(

N
∑

i=1

σ1
i σ2

i . . . σs
i R1,2,...,s

)

= ν (ǫ1 . . . ǫsR1,2,...,s) .

Apply now the relation

ǫ1ǫ2 . . . ǫsR1,2,...,s =
1

N
+ ǫ1ǫ2 . . . ǫsR

−
1,2,...,s,

where we denote by R−
1,2,...,s the quantity 1

N

∑N−1
i=1 σ1

i σ2
i . . . σs

i . We thus
get

(57) ν
(

R2
1,2,...,s

)

=
1

N
+ ν

(

ǫ1ǫ2 . . . ǫsR
−
1,2,...,s

)

.

Notice that in the right side of equation (57), we have to handle the
function R−

1,2,...,s, which depends on the N − 1 spin system. The Taylor
expansion of this term gives

(58) ν
(

ǫ1ǫ2 . . . ǫsR
−
1,2,...,s

)

= ν0

(

ǫ1ǫ2 . . . ǫsR
−
1,2,...,s

)

+

r
∑

u=1

1

u!
ν

(u)
0

(

ǫ1ǫ2 . . . ǫsR
−
1,2,...,s

)

+
1

(r + 1)!
ν

(r+1)
ζ

(

ǫ1ǫ2 . . . ǫsR
−
1,2,...,s

)

,

for any positive integer r and for a certain real number ζ ∈ [0, 1].

Suppose now that s is odd. Invoking Proposition 3.5, then all the
derivative terms in equation (58) vanish, and we obtain

ν
(

R2
1,2,...,s

)

=
1

N
+

1

(r + 1)!
ν

(r+1)
ζ

(

ǫ1ǫ2 . . . ǫsR
−
1,2,...,s

)

=
1

N
+ O(r),

where we have used Proposition 3.2. Consequently, relation (4) holds
with r = 2p.

Let us treat now the case when s is even (s = 2k). Recall that, given
a positive integer k, we set

U−
k = ǫ1ǫ2 . . . ǫ2kR−

1,2,...,2k
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and

Uk = ǫ1ǫ2 . . . ǫ2kR1,2,...,2k.

When we choose r = 2k, equation (58) becomes

ν
(

U−
k

)

= ν0

(

U−
k

)

+

2k
∑

u=1

1

u!
ν

(u)
0

(

U−
k

)

+
1

(2k + 1)!
ν

(2k+1)
ζ

(

U−
k

)

.

Furthermore, applying Propositions 3.5 and 3.2, we obtain

ν
(

U−
k

)

=

2k
∑

u=k

1

u!
ν

(u)
0

(

U−
k

)

+
1

(2k + 1)!
ν

(2k+1)
ζ

(

U−
k

)

=

2k
∑

u=k

1

u!
ν

(u)
0

(

U−
k

)

+ O(2k + 1).

However, Proposition 3.1 asserts that ν
(u)
0 (U−

k ) can be written as

(59) ν
(u)
0 (U−

k )=
∑

α=(l1,j1,...,lu,ju)∈D2k,u

c(2k, u, α)β2uν0

(

U−
k S−

ℓ1,j1,...,ℓu,ju

)

,

and we are now in a position to identify the negligible terms in the above
sum. Indeed, setting α for a tuple (l1, j1, . . . , lu, ju), we have:

(1) According to Proposition 3.4, if
∏u

i=1 ǫℓiǫji 6=
∏k

i=1 ǫ2i−1ǫ2i, the

term ν0(U
−
k S−

ℓ1,j1,...,ℓu,ju
) vanishes. This means in particular that, in

relation (59), c(2k, u, α) = 0 unless α ∈ Ck, and

ν
(u)
0 (U−

k ) =
∑

α=(l1,j1,...,lu,ju)∈D2k,u∩Ck

c(2k, u, α)β2uν0

(

U−
k S−

ℓ1,j1,...,ℓu,ju

)

.

(2) If u ≥ m + 1, Proposition 4.1 yields

ν0

(

U−
k S−

ℓ1,j1,...,ℓu,ju

)

= ν (Sℓ1,j1,...,ℓu,ju) + O(2k + 1) = O(2k + 1).

Hence, the terms ν
(u)
0 (U−

k ) can be neglected for u > k, and we obtain

ν(U−
k ) =

1

k!

∑

α∈D2k,k∩Ck

c(2k, k, α)β2kν0

(

U−
k S−

ℓ1,j1,...,ℓk,jk

)

+ O(2k + 1)

=
1

k!

∑

α∈D2k,k∩Ck

c(2k, k, α)β2kν (Sℓ1,j1,...,ℓk,jk
) + O(2k + 1),

where we have applied again Proposition 4.1, item (i) for the last equality.
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(3) Let us go back now to the Definitions (8) and (10) of Ck and D2k,k,
to see that

Ck ∩D2k,k = {α = (l1, j1, . . . , lk, jk);

α is a permutation of (1, . . . , 2k), li < ji for all i ≤ k}.

In particular, it is easily seen that, if α ∈ Ck ∩D2k,k, α is also an element
of Ω2k. Thus, owing to Lemma 3.10, we obtain

(60) ν(U−
k ) =

1

k!Nk

(

β2

1 − β2

)k
∑

α∈D2k,k∩Ck

c(2k, k, α) + O(2k + 1).

(4) Eventually, we will finish the proof by calculating the sum

∑

α∈D2k,k∩Ck

c(2k, k, α).

A first step in that direction is to notice that

Card (D2k,k ∩ Ck) =

(

2k

2

)(

2k − 2

2

)

. . .

(

2

2

)

=
(2k)!

2k
.

Furthermore, it is easily seen that D2k,k∩Ck contains exactly (2k)!
2kk!

classes
for the relation ∼ defined just before Proposition 3.6. Thus, Proposi-
tion 3.6 yields

∑

α∈D2k,k∩Ck

c(2k, k, α) = k!
(2k)!

2kk!
=

(2k)!

2k
,

and plugging this relation into (60), we get

ν(U−
k ) =

(2k)!

2kk!

(

β2

(1 − β2)N

)k

+ O(2k + 1).

Putting this relation together with (57), we obtain

ν
(

R2
1,2,...,s

)

=
1

N
+

(2k)!

2kk!

(

β2

(1 − β2)N

)k

+ O(2k + 1),

which is the announced result (5).
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6. CLT generalization for the overlap function

We will now prove Theorem 1.1. This will be done along the same lines
as in [8], except for the use of our asymptotic expansions (4) and (5). We
include the proof here for sake of readability: first, we need to establish
a result for the moments of R1,...,s which is a natural consequence of
Theorem 1.2.

Proposition 6.1. If k ≥ 0, β < 1 and s ≥ 3 then

ν(Rk
1,...,s) =

a(k)

N
k
2

+ O(k + 1),

where a(k) is the kth-moment of a standard Gaussian random variable.

Proof: We use symmetry between sites to get

ν(Rk
1,...,s) = ν(ǫ1 . . . ǫsR

k−1
1,...,s)

= ν(ǫ1 . . . ǫs(R
−
1,...,s)

k−1) +
k − 1

N
ν((R−

1,...,s)
k−2)

+
∑

l≥2

1

N l
ν((ǫ1 . . . ǫs)

(l+1)(R−
1,...,s)

k−l−1),

(61)

by writing R1,...,s = R−
1,...,s + N−1ǫ1 . . . ǫs and expanding the power.

However, using Theorem 1.2 and Schwarz inequality, we obtain

1

N l
ν((ǫ1 . . . ǫs)

(l+1)(R1,...,s)
k−l−1) = O(k + 1),

for l ≥ 2. Writing now R−
1,...,s = R1,...,s − ǫ1 . . . ǫs/N and expanding the

quantity (a + b)k−2, we see in a similar manner that

ν((R−
1,...,s)

k−2) = ν(Rk−2
1,...,s) + O(k − 1)

and thus
1

N
ν((R−

1,...,s)
k−2) =

1

N
ν(Rk−2

1,...,s) + O(k + 1),

so that (61) gives

(62) ν(Rk
1,...,s)=ν(ǫ1 . . . ǫs(R1,...,s)

k−1)+
k − 1

N
ν((R1,...,s)

k−2)+O(k+1).

Now, we perform a Taylor expansion for the first term on the right hand
side of (62), which yields

(63) ν(ǫ1 . . . ǫs(R1,...,s)
k−1) = ν0(ǫ1 . . . ǫs(R1,...,s)

k−1)

+ ν′
0(ǫ1 . . . ǫs(R1,...,s)

k−1) +
1

2
ν2

ζ (ǫ1 . . . ǫs(R1,...,s)
k−1).
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Since s ≥ 3, the first two terms on the right hand of (63) vanish, and
from Theorem 1.2 the error term is of order O(k+1). So, we can conclude
that

ν(Rk
1,...,s) =

k − 1

N
ν((R1,...,s)

k−2) + O(k + 1),

and our claim follows by induction on k.

Now, let us prove Theorem 1.1:

Proof of Theorem 1.1: Without loss of generality, we can assume
k(1, . . . , s) ≥ 1. For each integer 1 ≤ v ≤ k we consider integers
ℓ1(v), . . . , ℓs(v) such that

∏

ℓ1<···<ℓs

R
k(ℓ1,...,ℓs)
ℓ1,...,ℓs

=
∏

v≤k

Rℓ1(v),...,ℓs(v),

and we set

R(v) = Rℓ1(v),...,ℓs(v), R−(v) = R−
ℓ1(v),...,ℓs(v), ǫ(v) = ǫℓ1(v) . . . ǫℓs(v),

so that R(v) = R(v)− + ǫ(v)/N . Now we use symmetry between sites to
write

(64) ν

(

∏

ℓ1<···<ℓs

R
k(ℓ1,...,ℓs)
ℓ1,...,ℓs

)

=ν





∏

v≤k

R(v)



=ν



ǫ(1)
∏

2≤v≤k

R(v)



 ,

and we expand the product

∏

2≤v≤k

R(v) =
∏

2≤v≤k

(

R−(v) +
ǫ(v)

N

)

.

In each of the k−1 factors, we can choose either the term R−(v) (hence-
forth called the big term) or the term ǫ(v)/N (henceforth called the small
term). These k − 1 choices result into 2k−1 terms.

When we choose the small term in at least two factors the resulting
contribution is O(k + 1), which is easily seen by repeating the argument
of Proposition 6.1 and invoking Hölder’s inequality. If we choose the
small term in exactly l factors, the resulting contribution is

O(2l)O(k − 1 − l) = O(k + 1)

for l ≥ 2.
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Thus, we only need to consider the contributions where we have chosen
the small term in at most one factor, and this gives

ν(ǫ(1)
∏

2≤v≤k

R(v)) = ν(ǫ(1)
∏

2≤v≤k

R−(v))

+
1

N

∑

2≤v≤k

ν(ǫ(1)ǫ(v)
∏

u

R−(u)) + O(k + 1),

where the product is for 2 ≤ u ≤ k, u 6= v. Since there are k − 2 terms
in the product

∏

u R−(u) and performing another expansion, it follows
that

(65) ν(ǫ(1)ǫ(v)
∏

u

R−(u)) = ν0(ǫ(1)ǫ(v)
∏

u

R−(u)) + O(k − 1).

However, ν0(ǫ(1)ǫ(v)
∏

uR−(u)) is zero unless ǫ(1)ǫ(v)=1 i.e. {1, . . . , s}=
{ℓ1(v), . . . , ℓs(v)}. So, the expression (65) is of order O(k − 1) unless
v ≤ k(1, . . . , s), and thus

ν



ǫ(1)
∏

2≤v≤k

R(v)



 = ν



ǫ(1)
∏

2≤v≤k

R−(v)





+
k(1, . . . , s) − 1

N
ν

(

∏

u

R−(u)

)

+ O(k + 1).

We then proceed as in Proposition 6.1 to get, using similar expansions
as in (63),

ν(ǫ(1)
∏

2≤v≤k

R−(v)) = O(k + 1),

because s > 2.
Thus, putting together (64) and (65), we get

ν

(

∏

ℓ1<···<ℓs

R
k(ℓ1,...,ℓs)
ℓ1,...,ℓs

)

=
k(1, . . . , s) − 1

N
ν

(

∏

u

R−(u)

)

+ O(k + 1).

We can now establish our claim (3) by induction on k.
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