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SELECTIONS GENERATING NEW TOPOLOGIES

Valentin Gutev and Artur Tomita

Abstract

Every (continuous) selection for the non-empty 2-point subsets of
a space X naturally defines an interval-like topology on X. In the
present paper, we demonstrate that, for a second-countable zero-
dimensional space X, this topology may fail to be first-countable
at some (or, even any) point of X. This settles some problems

stated in [7].

1. Introduction

Let X be a topological space, and let F (X) be the set of all non-
empty closed subsets of X . Also, let D ⊂ F (X). A map f : D → X is
a selection for D if f(S) ∈ S for every S ∈ D . A selection f : D → X
is continuous if it is continuous with respect to the relative Vietoris
topology τV on D . Let us recall that τV is generated by all collections
of the form

〈V 〉 =
{

S ∈ F (X) : S ⊂
⋃

V and S ∩ V 6= ∅, whenever V ∈ V

}

,

where V runs over the finite families of open subsets of X .
In the sequel, all spaces are assumed to be at least Hausdorff and

infinite. In the present paper, we are interested in continuous selections
for D , when D is the family F2(X) = {S ∈ F (X) : |S| ≤ 2}. In this
case, a selection f : F2(X) → X is usually called a weak selection for X .

Every weak selection f for X defines an order-like relation �f on X
(see [10]) by letting that x �f y iff f({x, y}) = x. For convenience, we
write that x ≺f y if x �f y and x 6= y. We note that the relation “�f”
may fail to be transitive (see, for instance, [4, Proposition 2.2]). Never-
theless, to every continuous weak selection f for X we may associate a
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topology Tf on X generated by all “open f -intervals” {y ∈ X : y ≺f x}
and {y ∈ X : x ≺f y}, x ∈ X . According to [10, Lemma 7.2] (see,
also, [4, Lemma 3.3]), these “f -intervals” are always open in the original
topology of X . Hence, Tf is a coarser topology on X , and, consequently,
it is the original topology on X provided X is compact. In fact, by [11,
Theorem 1.1], for a compact space X the topology Tf coincides with
the open interval topology on X generated by a linear ordering on X
(i.e., Tf is an order topology on X). According to [10, Lemma 7.2],
Tf is also an order topology on X provided X is connected. Finally, by
[12, Theorem 4 and Remark 16], Tf coincides with the original topology
on X provided X is connected and locally connected.

Some further properties of this topology were studied in [4], [7]. For
instance, by [7, Corollary 2.3], Tf is always a regular topology on X .
On the other hand, by [7, Corollary 2.4], Tf is the usual Euclidean
topology on the rational numbers Q, whenever f is a continuous weak
selection for Q. Hence, it become quite natural to study this topology
on the irrational numbers P which is an uncountable, second countable,
zero-dimensional space.

We are now ready to state the main purpose of this paper. Namely,
in this paper, we show that every uncountable, non-compact, second-
countable, zero-dimensional space X has a continuous weak selection f
such that Tf is not first-countable at some point of X , see Theorem 4.1.
In the same theorem, we also demonstrate that Tf is not first-countable
at any point of X provided X has an infinite pairwise disjoint cover
consisting of uncountable open sets. Thus, in particular, there exists
a continuous weak selection f for the irrational numbers P such that
Tf is not first-countable at any point of P (Corollary 4.2), which pro-
vides a negative answer to [7, Question 2], and a positive one to [7,
Question 3]. Another interesting consequence is that an uncountable
metrizable space X , with a covering dimension dim(X) = 0, is compact
if and only if Tf is second-countable for every continuous weak selec-
tion f on X (see Corollary 4.4). For other applications, we refer the
interested reader to Sections 4 and 5 of the paper.

A preparation for the proof of Theorem 4.1 is given in Sections 2 and 3,
while its proof will be finally accomplished in Section 4. A part of this
preparation is based on a criterion for the existence of continuous weak
selections (see Theorem 5.1), which is analogous to a result of Eilenberg
on orderability [1]. It has a list of interesting independent consequences
(see Section 5).
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In conclusion, the second author would like to express his best grati-
tude to Professor Salvador Garćıa-Ferreira for his support and hospital-
ity, and for discussing some questions related to this research.

2. A relation generated by weak selections

Let X be a set, and let E ⊂ X × X be a relation on X . As usual,
we write xEy to denote that (x, y) ∈ E. Let us recall that a relation E
on X is anti-symmetric if xEy and yEx implies x = y. Following [7], we
say that an anti-symmetric relation E on X is a selection relation if xEy
or yEx for every x, y ∈ X . Let us emphasize that, in this terminology, a
relation E on X is a linear order on X if E is a selection relation which
is also transitive (i.e., xEy and yEz implies xEz).

It should be mentioned that the set of all possible weak selections
for X corresponds precisely to all possible selection relations on X .
Namely, any selection relation E on X defines a weak selection fE by
letting fE({x, y}) = x iff xEy. On the other hand, if f is a weak selec-
tion for X , then the order-like relation �f generated by f is a selection
relation. In the sequel, we will refer to �f as a selection relation.

In the present section, we are interested in a natural extension of such
relations to the subsets of X . Following [3], for a selection relation “�”
and (not necessarily non-empty) subsets B, C ⊂ X , we shall write that
B � C (respectively, B ≺ C) if y � z (respectively, y ≺ z) for every
y ∈ B and z ∈ C. Obviously, B ≺ C implies B ∩ C = ∅.

In these terms, we have the following simple criterion for continuity
in F2(X) which is, in fact, [4, Theorem 3.1].

Proposition 2.1 ([4]). Let X be a space, f be a weak selection for X,
and let “�f” be the selection relation generated by f . Also, let x, y ∈ X
be such that x ≺f y. Then, f is continuous at {x, y} if and only if there
are open sets U and V such that x ∈ U , y ∈ V , and U ≺f V .

On the other hand, we have the following property of weak selec-
tions. It was implicitly used in several papers and summarized in [6,
Proposition 4.1].

Proposition 2.2. Let X be a space, and let f be a weak selection. Then,
f is continuous on the singletons of X.

Motivated by Propositions 2.1 and 2.2, we may consider only the
subset

[X ]2 = {S ∈ F2(X) : |S| = 2},
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which will play a crucial role in this paper. In fact, we will make no
difference between weak selections f : F2(X) → X and weak selections
f : [X ]2 → X .

The following simple observation about special weak selections will
be also useful.

Proposition 2.3. Let X be a space which has a continuous weak selec-
tion, and an infinite pairwise disjoint cover V consisting of non-empty
open subsets. Then, there exists a continuous weak selection g : [X ]2 →
X such that V is an unbounded well-ordered set with respect to the se-
lection relation generated by g.

Proof: Let f : [X ]2 → X be a continuous weak selection. Also, let h : δ →
V be a one-to-one map, where δ = |V |. Then, for every x ∈ X , let
α(x) < δ be such that x ∈ h(α(x)). Finally, define g : [X ]2 → X by
letting for distinct points x, y ∈ X that g({x, y}) = x if α(x) < α(y), and
g({x, y}) = f({x, y}) if α(x) = α(y). Clearly, g is continuous because so
is f , and V is a discrete open cover of X . On the other hand, by the
definition of g, the selection relation �g defines the same order on V

as that one of the infinite cardinal δ. Hence, V is unbounded and well-
ordered with respect to �g.

We conclude this section with some properties of the topology gen-
erated by weak selections. Suppose that f is a weak selection for X ,
and �f is the selection relation generated by f . For every x ∈ X , we
consider the corresponding “open f -intervals”

If (x,∞) = {y ∈ X : x ≺f y}, and If (∞, x) = {y ∈ X : y ≺f x}.

Also, for convenience, we let

If (X) = {If (∞, x), If (x,∞) : x ∈ X} .

In these terms, the topology Tf is generated by all finite intersections
of members of If (X). This is the place to recall that, in general, the
relation �f is not transitive. Hence, we may have points x, y, z ∈ X
which generate an infinite “monotone” sequence

· · · ≺f x ≺f y ≺f z ≺f x ≺f · · ·

In particular, for such points, we also have that

{t ∈ X : x ≺f t ≺f y} 6= ∅ 6= {t ∈ X : y ≺f t ≺f x}.

Motivated by this, for every a, b ∈ X we will associate the set

If (a, b) = If (a,∞) ∩ If (∞, b) = {x ∈ X : a ≺f x ≺f b}.
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However, we don’t require that a ≺f b. Hence, both f -intervals If (a, b)
and If (b, a) make sense, and could be non-empty.

In what follows, we shall say that a point x ∈ X is an f -cutting point
if there are points a, b ∈ X , with x ∈ If (a, b). Otherwise, we shall say
that x is an f -extreme point of X . Clearly, X may have at most two
f -extreme points, which could be different for different selections f .

Proposition 2.4. Let X be a space, f be a weak selection for X, and
let A, B ⊂ X be non-empty subsets such that

If (A, B) =
⋂

{If (a, b) : (a, b) ∈ A × B} 6= ∅.

Then, A ∩ B = ∅. In particular, if x ∈ X is an f -cutting point and
U ∈ Tf , then x ∈ U if and only if there are non-empty finite disjoint
subsets A, B ⊂ X, with x ∈ If (A, B) ⊂ U .

Proof: The first part of this statement follows from the fact that If (z,z)=
∅ for every z ∈ X . As for the second part, by the definition of Tf , x ∈ U
if and only if there is a finite set K ⊂ If (X), with x ∈

⋂

K ⊂ U . On
the other hand, x ∈ If (a, b) for some a, b ∈ X , because x is an f -cutting
point. Let A0 = {y ∈ X : If (y,∞) ∈ K } and B0 = {z ∈ X : If (∞, z) ∈
K }. Then, A = A0 ∪ {a} and B = B0 ∪ {b} are as required.

3. A condition for continuity of weak selections

Lemma 3.1. Let X be a space, f : [X ]2 → X be a selection, and let
�f be the selection relation generated by f . Then, f is continuous if
and only if the set L =

{

(x, y) ∈ X2 : x ≺f y
}

is open in X2. In

particular, if f is continuous, then the map h : L → [X ]2, defined by
h((x, y)) = {x, y}, (x, y) ∈ L , is a homeomorphism.

Proof: Take distinct points x, y ∈ X such that (x, y) ∈ L , i.e. x ≺f y.
Then, by Proposition 2.1, f is continuous at {x, y} if and only if there are
open sets U, V ⊂ X such that x ∈ U , y ∈ V , and U ≺f V . According to
the definition of L , this implies that f is continuous at {x, y} if and only
if there are disjoint open subsets U, V ⊂ X such that (x, y) ∈ U×V ⊂ L .
In particular, if f is continuous, then the map h is a continuous open
bijection which completes the proof.

Lemma 3.1 suggests a natural construction of continuous weak se-
lections. To this end, for a subset Z ⊂ X2, let us agree to say that
π : Z → X is a projection if π((x, y)) ∈ {x, y} for every (x, y) ∈ Z. Then,
whenever Z ⊂ X2, we have always two standard continuous projections
πi : Z → X , i = 0, 1, defined by π0((x, y)) = x and π1((x, y)) = y,
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(x, y) ∈ Z. Here is another example of continuous projections, which
will play an important role in the next section.

Example 3.2. Let X be a space, Z ⊂ X2, U be a discrete open cover
of Z, and let ξ : U → 2 = {0, 1} be an arbitrary map. Define a map
π : Z → X by letting for (x, y) ∈ Z that π((x, y)) = πξ(U)((x, y)) if
(x, y) ∈ U ∈ U . Then, π is a continuous projection such that π ↾ U =
πξ(U) ↾ U , U ∈ U .

Proof: Follows from the fact that U is a discrete open cover of Z.

According to Lemma 3.1, we now have the following immediate con-
sequence. It provides a possible way to construct continuous weak selec-
tions from given ones.

Corollary 3.3. Let X be a space, f : [X ]2 → X be a continuous se-
lection, and let L and h : L → [X ]2 be as in Lemma 3.1. Also, let
π : L → X be a continuous projection. Then, g = π ◦ h−1 : [X ]2 → X is
a continuous selection.

4. A construction of continuous weak selections

Theorem 4.1. Let X be an uncountable, non-compact, second-count-
able, zero-dimensional space. Then, X has a continuous weak selection f
such that Tf is not first-countable at some point of X. If, moreover, X
has an infinite pairwise disjoint open cover consisting of uncountable
sets, then X has a continuous weak selection f such that Tf is not first-
countable at any point of X.

Proof: First of all, let us observe that X is regular because it has a base
of clopen sets. Hence, by the Urysohn’s metrization theorem [13] (see,
also, [2]), X is metrizable. Also, dim(X) = 0 [14] (see, also, [2]) because
X is a Lindelöf space being regular and second-countable.

In case X has an infinite cover consisting of pairwise disjoint uncount-
able open sets, we let this cover to be V . Otherwise, let us observe that
X has an infinite cover V consisting of non-empty pairwise disjoint open
sets such that at least three members of V are uncountable. To this end,
let Z be the set of all points x ∈ X such that x has a local base con-
sisting of uncountable open sets. Then, Z must be closed because every
neighbourhood of a point z ∈ Z will contain a point of Z. In this case,
X \ Z must be countable. Namely, take a countable base O for the
topology of X , and then observe that X \ Z =

⋃

{O ∈ O : |O| ≤ ω}.
Since X is uncountable, Z must be also uncountable and, in particular,
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infinite. Thus, using that dim(X) = 0, we can take V to be an infi-
nite cover of X consisting of non-empty pairwise disjoint open sets, with
|{V ∈ V : V ∩ Z 6= ∅}| ≥ 3.

Having already constructed the cover V , let B be a countable base
for the topology of X consisting of non-empty clopen subsets such that
B is a refinement of V . In what follows, we will use D(B) to denote
the set of all non-empty subsets W ⊂ B which are finite and pairwise
disjoint. Next, for every W ∈ D(B), let 2W be the set of all maps
µ : W → 2 = {0, 1}. Also, we let

M0 =
⋃

{

2W : W ∈ D(B)
}

.

Finally, for every µ ∈ M0, we let Dom(µ) to be the domain of µ, which
is clearly a non-empty finite and pairwise disjoint subset of B.

Note that X has a continuous weak selection, because it is a sub-
set of the Cantor set [14] (see, also, [2]) being a regular space with
a countable clopen base. Hence, by Proposition 2.3, X has a contin-
uous weak selection g such that V is an unbounded well-ordered set
with respect to the selection relation “�g” generated by g. Now, let
V ∗ = {V ∈ V : |V | > ω}, which, by construction, has the property
that |V ∗| ≥ 3. Next, let V ∗ = min�g

V ∗, and then take x∗ ∈ V ∗ and
W ∗ ∈ B to be such that x∗ ∈ W ∗ ⊂ V ∗. Finally, define

(4.1) µ∗
i : {W ∗} → 2, i = 0, 1, by µ∗

i (W
∗) = 1 − i.

Thus, we get two different elements µ∗
0, µ

∗
1 ∈ M0, so we let

α(µ∗
0) = min�g

(

V ∗ \ {V ∗}
)

and α(µ∗
1) = min�g

(

V ∗ \ {V ∗ ∪α(µ∗
0)}

)

.

For later use, let us observe that

(4.2) W ∗ ≺g α(µ∗
0) ≺g α(µ∗

1),

while both α(µ∗
0) and α(µ∗

1) are uncountable.

Now, we are going to extend the map α : {µ∗
0, µ

∗
1} → V to an injective

map α : M0 → V such that, for every µ ∈ M0,

(4.3) W ≺g α(µ), whenever W ∈ Dom(µ).

This can be done by transfinite induction because M0 is countable, while
V is infinite, hence |M0| ≤ |V |. Namely, take a well-ordering ≪ on M0

as that of the first infinite ordinal ω such that µ∗
0 = min≪ M0 and

µ∗
1 = min≪

(

M0 \ {µ∗
0}

)

. Next, suppose that α(ν) has been already
defined for every ν ≪ µ and some µ ∈ M0, with µ ≫ µ∗

1. Then,

Vµ = {α(ν) : ν ≪ µ} ∪ {V ∈ V : W ⊂ V for some W ∈ Dom(µ)},
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is a non-empty finite subset of V , while V is unbounded. Hence the set

V
µ = {V ∈ V : max�g

Vµ ≺g V }

is also non-empty. So, we may define α(µ) = min�g
V µ, which completes

the construction.

Now, for convenience, we let ϑ : {X} → 2 = {0, 1} to be the map
ϑ(X) = 0, and M = M0 ∪ {ϑ}. Also, we let A0 =

⋃
(

V \ α(M0)
)

,
α(ϑ) = A0, and A = α(M0)∪{A0}. Thus, we get a discrete partition A

of X and a one-to-one map α : M → A such that (4.3) holds for every
µ ∈ M0. Keeping in mind this, we are going to construct a discrete open
partition U =

{

U i
α(µ) : µ ∈ M and i = 0, 1

}

of the set L =
{

(x, y) ∈

X2 : x ≺g y
}

. To this end, to every subset F ⊂ X and every k ∈ 2, we
associate another subset S (k, F ) defined by

(4.4) S (k, F ) =

{

X \ F if k = 0

F if k = 1.

Then, for every µ ∈ M , we define

U0
α(µ) = L ∩

(

⋃

{

S (1 − µ(W ), W ) × α(µ) : W ∈ Dom(µ)
}

)

,(4.5)

and

U1
α(µ) = L ∩

(

⋃

{

S (µ(W ), W ) × α(µ) : W ∈ Dom(µ)
}

)

.(4.6)

It is easy to observe that U0
α(µ) ∪ U1

α(µ) = L ∩ (X × α(µ)), hence U is

a partition of L . Also, U is defined only by products of clopen sets,
hence it is clopen as well.

Finally, we define a map ξ : U → 2 by letting ξ(U) = i if U = U i
α(µ)

for some µ ∈ M . Thus, by Example 3.2, we get a continuous projection
π : L → X , with π ↾ U i

α(µ) = πi ↾ U i
α(µ), µ ∈ M and i = 0, 1. Hence,

by Corollary 3.3, f = π ◦ h−1 is a continuous selection for [X ]2. In what
follows, let “�f” be the selection relation generated by f .

We are going to show that f is as required. To prepare for this, take
µ ∈ M0, W ∈ Dom(µ) and (x, y) ∈ W × α(µ), and let us observe that

(4.7) f({x, y}) =

{

x if µ(W ) = 0,

y if µ(W ) = 1.

Indeed, by (4.3), we have W × α(µ) ⊂ L . If µ(W ) = 0, then, by (4.4)
and (4.5),

S (1 − µ(W ), W ) × α(µ) = S (1, W ) × α(µ) = W × α(µ) ⊂ U0
α(µ).
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So (x, y) ∈ U0
α(µ), which implies that f({x, y}) = π0((x, y)) = x. If

µ(W ) = 1, then, in the same way, by (4.4) and (4.6),

S (µ(W ), W ) × α(µ) = S (1, W ) × α(µ) = W × α(µ) ⊂ U1
α(µ),

and therefore f({x, y}) = π1((x, y)) = y.
Now, take y, z ∈ X and non-empty finite disjoint subsets A, B ⊂ X .

We have the following crucial property of the topology Tf .

(4.8) {y, z} ∩ (A ∪ B) = ∅ implies If (A, B) \ If (y, z) 6= ∅.

Indeed, consider the finite set K = A ∪ B ∪ {y, z}, and then take a
pairwise disjoint family W = {Wx : x ∈ K} ⊂ B such that x ∈ Wx

for every x ∈ K. Next, define µ : W → 2 by letting for x ∈ K that
µ(Wx) = 0 if x ∈ A or x = z, and µ(Wx) = 1 otherwise. Thus, we get a
particular element µ of M0. Take a point e ∈ α(µ), and let us observe
that, by the definition of µ and (4.7), x ≺f e if x ∈ A or x = z, and
e ≺f x if x ∈ B or x = y. That is, e ∈ If (A, B), but e /∈ If (y, z).

We are finally ready to show that the selection f is as required by
showing that each point of X is an f -cutting point. Take a point x∈X ,
and let W ∈B be such that x∈W . Just like in (4.1), define µi : {W}→2,
i=0, 1, by µi(W )=1−i. Thus, we get two different elements µ0, µ1∈M0,
so α(µ0) 6= α(µ1). Then,

(4.9) x ∈ If (y0, y1), whenever (y0, y1) ∈ α(µ0) × α(µ1).

Indeed, by (4.7), µ0(W ) = 1 implies f({x, y0}) = y0 because (x, y0) ∈
W× α(µ0), while µ1(W ) = 0 implies f({x, y1}) = x because (x, y1) ∈
W × α(µ1). This completes the verification of (4.9). In fact, it also im-
plies that Tf is not first-countable at x ∈ X if both α(µ0) and α(µ1) are
uncountable. Namely, suppose if possible that Tf is first-countable at
x ∈ X , but α(µ0) and α(µ1) are uncountable. Then, by Proposition 2.4,
there is a countable set E(x) ⊂ X such that for every Tf -neighbour-
hood U of x there are non-empty finite disjoint subsets A, B ⊂ E(x),
with x ∈ If (A, B) ⊂ U . On the other hand, there are points yi ∈
α(µi) \ E(x), i = 0, 1, because both α(µ0) and α(µ1) are uncountable.
However, by (4.9), this implies that x ∈ If (y0, y1), while, by (4.8), it
implies that If (A, B)\ If (y0, y1) 6= ∅ for every two non-empty finite dis-
joint subsets A, B ⊂ E(x). The contradiction so obtained implies that
Tf is not first-countable at x. In particular, by (4.2), it now implies that
Tf is not first-countable at the point x∗ selected at the beginning of this
proof. Finally, if each element of V is uncountable, then Tf will be not
first-countable at any point of X , which completes the proof.
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The following is an immediate consequence of Theorem 4.1 which
provides a negative answer to [7, Question 2], and a positive one to [7,
Question 3].

Corollary 4.2. Let P be the set of the irrational numbers endowed with
the usual Euclidean topology. Then, P has a continuous weak selection f
such that Tf is not first-countable at any point of P.

Here is another interesting consequence.

Corollary 4.3. Let C be the Cantor set, and let p ∈ C. Then, X =
C \ {p} has a continuous weak selection f such that Tf is not first-
countable at any point of X. In particular, f cannot be extended to a
continuous weak selection for C.

As it was mentioned in the Introduction, if (X, T ) is compact, then
Tf = T for every continuous weak selection f for X . The same is true
if (X, T ) is connected and locally connected, but we don’t know if this
holds for other classes of spaces (see [7, Question 4]). Related to this,
we have the following further consequence of Theorem 4.1.

Corollary 4.4. Let X be an uncountable metrizable space X, with
dim(X) = 0. Then, X is compact if and only if Tf is second-countable
for every continuous weak selection f for X.

Proof: If X is compact and T is the topology of X , then Tf = T

for every continuous weak selection f for X . Note that, in this case,
X has at least one continuous weak selection because it is a subset of the
Cantor set. Suppose that X is not compact. We have the following two
possibilities. If X is not separable, then it should have an uncountable
discrete cover consisting of open sets because dim(X) = 0. On the
other hand, it has a continuous weak selection because, for instance,
the topology of X is generated by some linear ordering on X , [8], [9]
(see, also, [2]). Then, by Proposition 2.3, X has a continuous weak
selection g such that Tg is not second-countable. In case X is separable,
by Theorem 4.1, we get again that X has a continuous weak selection f
such that Tf is not second-countable. Thus, if Tf is second-countable
for any continuous weak selection for X , then X must be compact.

5. A condition for the existence of continuous weak
selections

In this section, we demonstrate some natural relations between the
existence of continuous weak selections, and the Eilenberg’s result [1,
Theorem I] about ordered topological spaces. In fact, these relations
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were naturally incorporated in Lemma 3.1. Now, we provide another
reading of this lemma in terms of Eilenberg’s condition of orderability
in [1], and some possible further consequences. Following the termi-
nology in [1], for a space X , we let ∆(X) = {(x, x) : x ∈ X}, and
P (X) = X2 \ ∆(X). Also, we consider the map Λ: P (X) → P (X)
defined by Λ(x, y) = (y, x), whenever (x, y) ∈ P (X).

Theorem 5.1. A space X has a continuous weak selection if and only if
there are non-empty open subsets L and R of P (X) such that L∩R =∅,
L ∪ R = P (X), and R = Λ(L ).

Proof: Let f be a continuous weak selection for X . Following Lemma 3.1,
we let L = {(x, y) ∈ P (X) : x ≺f y} and R = Λ(L ), where �f is the
selection relation generated by f . Then, L ∩R = ∅ and L ∪R = P (X).
Also, L is open in P (X) if and only if R ⊂ P (X) is open. Hence,
Lemma 3.1 completes the proof of this implication.

Suppose now that there are open subsets L , R ⊂ P (X) such that
L ∩ R = ∅, L ∪ R = P (X), and R = Λ(L ). Next, define a selection
f : [X ]2 → X by letting f({x, y}) = x if (x, y) ∈ L . Note that if x 6= y,
then either (x, y) ∈ L or (y, x) ∈ L , so our definition is correct. That
f is continuous, it follows by Lemma 3.1.

Corollary 5.2. Let X be a space which has a continuous weak selection.
Then, P (X) is not connected.

Proof: According to Theorem 5.1, there are non-empty open subsets
L , R ⊂ P (X) such that L ∩R = ∅ and L ∪R = P (X). In particular,
both L and R are clopen in P (X).

Corollary 5.3. Let X be a connected space which has a continuous weak
selection. Then, P (X) consists of two components L and R such that
R = Λ(L ).

Proof: By Corollary 5.2, P (X) is not connected. The rest of the proof
follows precisely that one in [1, (3.1)].

Corollary 5.4. Let X be a connected space which has a continuous
weak selection, and let E(X) = {x ∈ X : X \ {x} is connected}. Then,
|E(X)| ≤ 2.

Proof: By Corollary 5.3, P (X) has exactly two components L and R

such that R = Λ(L ). Suppose that x, y ∈ E(X) are distinct points,
with (X \ {x}) × {x} ⊂ L and (X \ {y}) × {y}) ⊂ L . Then, we get
that (y, x) ∈ L and (x, y) ∈ L , which is impossible because Λ(x, y) =
(y, x). Thus, we get that there exists at most one point x ∈ E(X), with
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(X \ {x}) × {x} ⊂ L . In the same way, there exists at most one point
y ∈ E(X), with (X \ {y}) × {y} ⊂ R. Hence, |E(X)| ≤ 2.

Now we get the following result, which, for instance, implies the well-
known fact that the unit circle has no continuous weak selection. Let us
recall that we consider only infinite spaces.

Corollary 5.5. Let X be a connected space which has a continuous
weak selection. Then, there exists a point x ∈ X such that X \ {x} is
not connected.

We complete this list of consequences with the following one related
to continuous weak selections on product spaces.

Corollary 5.6. Let X be a space such that X2 has a continuous weak
selection. Then, X must be totally disconnected.

Proof: Let Z be a connected component of X , and let us show that
|Z| = 1. Suppose if possible that |Z| ≥ 2. Since Z2 has a continu-
ous weak selection being a subset of X2, by Corollary 5.5, there is a
point (y, z) ∈ Z2 such that Z2 \ {(y, z)} is not connected. However,
this is not possible because |Z| ≥ 2 and Z is connected, a contradiction.
Thus, any connected component of X is a singleton. Now let us observe
that X is naturally embedded in X2, hence X has also a continuous
weak selection. According to [5, Theorem 4.1], this implies that the
connected components of X coincide with the quasi-components of X .
That is, X is totally disconnected.
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