
Links & Letters 1, 1994 9-23

Computational linguistics: a brief
introduction

Anna Espunya i Prat
Dpt. de Filologia Anglesa i Gerrnanística
Universitat Autbnoma de Barcelona

ABSTRACT

Cornputationai Linguistics is an interdisciplinary field of study that encornpasses knowledge
rnainly from three areas: Linguistics, Computer Science and Logic. This article is an introduction
to the anai~sis of language frorn a Computational Linguistics approach, to the first questions
linguists face when &ey need to make natural language fit into structures that computers can
manipulate. Easy examples illustrate current existing approaches to the morphology, syntax and
meaning of language, presenting sorne of the dificulties and challenges faced in this field. A list
of basic introductory readings is provided in the last section.

1. Introduction: computers and human language

For many of us it would be difficult to think of a world without computers.
They are part of our existence at al1 scales: powerful computers in charge of the
security and finances of countries, controlling airports, dams, hospitals and city
traffic; domestic computers that we use as word processors, home economists,
or entertainers. And recently, even as teachers.

As they become more popular, companies make them more and more
friendly, easier to use. However, communication between us and them is not
yet based on our language. Even if it is as simple as clicking the mouse on one
command of the menu, much in our interaction with computers needs to be
adapted to their possibilities.

Making computer systems that understand and speak any human language
(also called natural language) is the main goal of Computational Linguistics,
an interdisciplinary field of study that encompasses knowledge mainly from
three areas: Linguistics, Computer Science and Logic. Computational Linguis-
tics appeared in the late 1950s with the first work in Machine Translation, name
given to the translation from one natural language into another performed by

10 Links & Letters 1, 1994 Anna Espunya i Prat

the computer without the help of a human translator. Since those pioneering
days there has been a steady increase in the quantity, variety and quality of the
applications. Apart from machine translation, two of the most important lines
of research and development have been man-machine interfaces and informa-
tion retrieval systems:

Man-machine interfaces are programs that allow communication between
the computer and its human user. For instance, if you are using a database, you
may want to ask questions in English instead of using the command language
provided by the database.

Information retrieval systems try to respond to the need of finding only the
relevant information in large corpora of texts. Given that much of the infor-
mation people use is still in a natural language form (e.g., books, journals,
reports, etc.), every time a specific piece of information is needed, someone has
to actually read al1 potential sources. Instead, we may want to ask a program to
do the job for us. The system will read, select and retrieve from a natural
language text the information we need.

This article is not intended as an introduction to concrete Computational
Linguistics applications. Neither is it meant to be a critical review of the most
recent developments in this field. And finally, it is not intended to contribute
to the debate on the possibilities and limitations of computers as real natural
language speakers or the more general debate on the philosophy of Artificial
Intelligence. Those are topics which occupy the pages of specialized journals,
books and presentations in conferences. This article is an introduction to the
analysis of language from a Computational Linguistics approach, to the first
questions linguists face when they need to formalize a language, to make it fit
into structures that computers can manipulate. It is addressed to people with
a background in language studies and some familiarity with personal compu-
ters, at the user level'.

2. Symbols and languages2

Computers are very general symbol manipulation machines. Symbols are made
up of zeroes and ones and they can represent numbers but also more complex
objects like words, sentences, syntactic trees, etc. Take, for example, the word
"1s". Many computers will represent this word as the sequence of two bytes3
1000100 1 and 1001001 1 corresponding to the letters 1 (137) and S (147) in
the ASCII code (American Standard Code for Information Exchange). If you

1. As an entertaining introduction to rhe basic aspects of computers and an "antidote against anxiety
produced by computers", 1 would recommend John Shore's The Sachertorte Algorithm and Other
Antidotes to Computer Anxiety, 1985, Viking Penguin. There is Spanish translation published by
Alianza Editorial (Alianza Universidad collection)

2. This section is based rnainly on section 1.1 in the Introduction of Gazdar and Mellish (1989).
3. A byte is an information unit consisting of eight binary digits or bits.

Cornputational Linguistiw: a brief introduction Links & Letters 1, 1994 11

give a computer a list of names and ask it to sort them in alphabeticai order,
"in" will precede "six" not because "i" precedes "S" in the alphabet, but because
137 is a smaller number than 147.

The point of the previous example is that computers represent linguistic
objects in non-linguistic ways. We said before that computers are symbol
manipulation machines. This means that, at the lowest level, computers
perform very basic operations. Three decades ago, the instructions that pro-
grammers gave the computers (the programs) were very much machine orien-
ted, which means that they had to te11 the Computer to add numbers or move
information around in the computer's memory. Programmers had to think of
the problems in terms of numbers. Fortunately computer science has developed
"high level" programming languages that ailow to write more abstract instruc-
tions and concentrate on the problem which the program is intended to solve.

Arnong the high level programming languages used in Computational
Linguistics projects, LISP and PROLOG are the most common4. Sometimes
other languages are chosen, mainly to achieve higher speed in the execution of
tasks, for instance "C" language and its variations.

3. Computational linguists and natural language

Before we start our tour of Computational Linguistics, we should make several
observations on its goals compared to the goals of Theoretical Linguistics. The
goal of Theoretical (generative) Linguists is to find the simplest theory of
grammar that can account for our knowledge of language, and to explain the
innate mechanisms that allow people to learn and use human language. They
are concerned with language universals (principles of grammar which apply to
al1 natural languages) and they focus mainly on grammaticai competence (i.e.,
why people accept some sentences and reject others). Some particular linguistic
theories also take as a fundamental goal to explain language use in ways which
are psychologically plausible.

The goal of computationai linguists is to write programs that can handle
(understand or generate) as much natural language material5 as possible. These
programs are good but approximate solutions; they cannot deal with al1
sentences of a natural language, although they deal with the most common and
interesting constructions. This fact, which is generally accepted by computa-

4. LISP and PROLOG are very different programrning languages, the basic difference being in the
underlying philosophy of how knowledge is stored and put to use and how problems need to be
approached.

5. The terrn "Cornputational Linguistics" refers to studies on language independent of its physical
realization as sound, which does not rnean that cornputers cannot "hear" or "speak". Machine
decoding of spoken material, Le., hearing and identifying sentences as sequences of sounds is the
goal of Speech Recognition, a field that combines work in Phoneticsl Phonology and Engineering.
Machine production of spoken material ("uttering a rnessage) is the goal of Speech Synthesis, also
an interdisciplinary field.

12 Links & Letters 1, 1994 Anna Espunya i Prat

tional linguists, would be unacceptable for theoretical linguists, since it is part
of their goal to account for al1 grammatical sentences of a language with their
theory of grarnmar.

Work in Theoretical Linguistics is relevant for Computational Linguistics;
al1 generalization efforts (e.g., by reducing a large variety of sentences to a small
set of rules and constraints on those rules) made in the former to describe the
grammar of a particular natural language, are essential for the latter, especially
in the process of sentence analysis.

Work in Computational Linguistics is relevant for Theoretical Linguistics.
The theory that underlies the more pragmatic work in Computational Linguis-
tics views language understanding and generation as processes of symbol-ma-
nipulation in a rule-governed fashion. To the extent that Theoretical Linguistics
is interested in al1 aspects of the language capacity (the abstract knowledge of
language and how it is used), its work should be testable by systems which
computational linguists design (Grishman 1986, Winograd 1983).

The task of constructing systems that understand or generate natural
language is a complex one. It requires the integration of many kinds of data,
linguistic (morpho-syntactic, semantic) and non-linguistic (knowledge of the
domain of discourse). It also requires an effective use of al1 data. In this sense,
designing and building a natural language application is an engineering task.
One general strategy to make construction jobs easier is modularity, (i.e.,
dividing the problem into smaller subproblems. This notion is not foreign to
linguistics. Traditionally, the language capacity is represented and studied as
worlung in levels of structure: sounds, words, sentences. Linguists study the
phonetics, the phonology, the morphology, the semantics, the syntax of a
language and they assume the existente of levels or modules in human
competence (e.g., Chomsky's Autonomous Syntax Principle). Even if the
modular view is a simplification of the language capacity, it makes natural
language systems flexible and easy to expand.

Just how much knowledge is used in the understanding or generation
process depends on the purpose of the application. For many applications the
essential task is analysing sentences, (i.e., determining what sentences mean.
Some applications also require an analysis of suprasentential units, such as
discourse and dialogue. In this presentation we will concentrate on sentence
analysis.

4. Sentence analysis

We said before that the goal of sentence analysis is to determine what a sentence
means. In computer terms, every input sentence has to be assigned a meaning
representation of some kind. Two types of information are combined in a
sentence that allow speakers to reach an interpretation of that sentence: its

Computational Linguistics: a brief introduction Links & Letters 1, 1994 13

syntactic structure and the lexical meaning ofthe words that compose it. Words
usually take special shapes when they occur syntagmatically (i.e., in relation
with the other words in the sentence). Thus the morphology ofwords is relevant
for syntactic analysis. Once the structure of the sentence is determined,
semantics is in charge of accounting for the way words and structures combine
to express a meaning.

Sections 4.1 and 4.2 try to explain in very simple terms the tasks of the
different modules of a sentence analysis system and the language facts such a
system has to be ready to deal with, particularly those related to Morphology
and Syntax. Section 4.3. introduces several basic issues related to Semantics.

4.1. Morphological analysis

Sentences are made up of words. Therefore, an important step in the process
of syntactic analysis is looking up the words in the dictionary. The look-up stage
is not a trivial one. When words appear in sentences they usually carry
inflectional endings. Derivational afixes are also very common and they often
change the part of speech of the root they attach to. And we should bear in
mind that addition of affixes may involve spelling changes. Let me use some
examples from English to illustrate the kind of problems a computational
linguist faces when trying to formalize al1 morphological facts of a language6.

Consider the conjugation of the English verb. Suppose the sentence we are
trying to analyse is:

She always stops the joggers.

When looking up the word "stops", the result we expect is an analysis like:

{stop, verb} + {-S, 3rd person singular, present tense}

Our morphological analyser will have to divide the sequence "S t o p s" into
two valid morphs, corresponding to the root {stop} and the inflectional ending
{-S}, respectively. In order for the morphological analyser to identify the two .
morphs, they have to be in the dictionary which is consulted by the program.
For now we may assume that both {stop, verb} and {-S, 3rd person singular,
present tense} are in the dictionary. It does not seem important whether the
items in the dictionary represent morphemes (abstract units) or morphs

6. In fact, English is a simple language as far as its inflectional morphology is concerned. Romance
languages, just to mention a well-known family, display complex inflectional systems. Just as an
example, consider the Spanish verb "acordar" (to agree). Some of its conjugated forms have root
"acord-", with the stress on the inflection, e.g., "acordaremos" (1st. person plural, future tense), and
other forms use the root "acuerd-", with the stress on the root, e.g. "acuerdas" (2nd person singular,
present tense). The change "o" - "ue" is present in other verbs: "recordar", "volar", "sonar", "rogar",
etc.

14 Links & Letters 1, 1994 Anna Espunya i Prat

(particular realisations) because the representation of morphemes and the
representation of morphs have exactly the same characters. Now let us suppose
that the verb is not "stops" but "spies". In this case, the dictionary entries {spy,
verb} and {-S, 3rd person singular} may never be identified by the analyser,
which is dealing with the sequence "S p i e S". Probably the first solution that
comes to mind is to have two entries for rhe verb "spy": {spy, verb} and {spie,
verb}, with a tag signalling that they are the same verb, have the same meaning,
etc. This may certainly be the only solution if the spelling alternation "y 1 ie"
only affected the verb "spy": that is actually how morphological conditioning
(e.g, men as the plural of man, deer as the plural of deer) is dealt with. However,
since many words (nouns and verbs) show the same spelling change, it may
be more eficienr to incorporate the linguistic generalisation al1 roots ending in
a consonant + y suffer a spelling change from y to ie before inflections that
do not begin with i . Generalisations allow economy in the storage space, which
in turn reduces the time required to find items.

A possible approach to the problem is to conceive the spelling change as a
rule or an instruction to relate input words ending in ie in the appropriate
conditions to dictionary items ending in y . Thus the dictionary only needs to
include representations of morphemes (e.g., {spy, verb} but not of each concrete
realization {spy, verb, non-third-person-singular}, {spie, verb, third-person-sin-
gular}. The morphology analysis program identifies the potential morphs in
the input word. If a possible spelling change is detected (e.g., ie from y in the
sequence 'S p i e" in "S p i e S") , a small sub-program returns the candidate
morpheme {spy}, which is then checked in the dictionary. This approach is
called two-leve1 morphology7, because there are "surface" forms (those of input
words) and "lexical" forms (those in the dictionary). The correspondence
between the two levels is achieved through the small sub-programs.

4.2. Analysing syntax: parsers and grammars

In logical or mathematical terms, ~ r o v i d i n ~ a syntactic anal~sis of a sentence is
equivalent to finding out whether that sentence belongs to the set of possible
sentences of a language, and if it is so, giving a representation of its structure,
for instance in the form of a syntactic tree or a bracketed sentences with labels
as subscripts. As we know, the number of sentences that are possible in a
language is infinite. Fortunately, membership in this infinite set seems to be
characterizable through a finite set of rules. Such characterizations of languages
are called "grammars". Together with the lexicon (or dictionary), grammars can
be considered the knowledge of language. In Computational Linguistics, the
process of syntactic analysis is called "parsing".

7. The first implementations of "two-level" morphological analysers were written by Karttunen and
his students for English (Karttunen, 1983) based on the work on Finnish by Kimmo Koskenniemi
(see Barton et a l . 1987 and Karttunen 1983).

Cornputational Linguistics: a brief introduction Links & Letters 1, 1994 15

What is required by a computer to parse a sentence of a particular language?
First ofall, the computer should have the knowledge of that particular language,
(i.e., a grammar and a dictionary). Secondly, the computer should be able to
use the knowledge of language. We need a program that takes the sentence as
input and finds a combination of grammar rules and words of the dictionary
that describe that sentence. Such programs are called "parsers".

Parsers make use of grammars. Both may be integrated in different ways, or
rather, to various degrees. At one end, there are the parsers which contain
instructions equivalent to grammar rules. The separation between grammar
and parser is less clear. At the other end, there are systems which keep grammar
and parser separated as different modules so that the same parser may be used
with grammars of different languages. Another advantage of keeping the parser
separated from the grammar is that it saves time and effort to the grammar
writer (the person who writes rules that describe the particular language) and
the programmer who builds the parser. If a gramatical sentence is not accepted
by the parser, the problem could be in either component: the grammar might
be wrong, or the parser might not work properly.

It is now time to set abstract discussions aside for a moment and see a
description of a toy program for the syntactic analysis of language X, a subset
of English. The program's components are a small grammar, an even smaller
lexicon and the description of the parser. Even though we described morpho-
logical analysis, we will obviate this step here.

grammar of language X:

S + N P VP
NP + DET N
V P + V t N P
VP + Vi

This grammar consists of a set of rewriting rules, rules that allow to build
phrase structure trees of sentences. Each node has a symbol (syntactic category:
S, NP, VP, etc. or word). The symbol on the left hand side of the rule is the
mother of the symbols on the right hand side. This is called "immediate
constituent approach", and it is just one of the possible approaches to grammar.

lexicon of language X:

the : DET
run : Vi (intransitive verb)
spy : Vt (transitive verb)
jogger: N
girl: N

16 Links & Leners 1, 1994 Anna Espunya i Prat

Combining the rules and words of the toy grammar and lexicon (obviating
the morphology), sentences like the following will be generated:

The girl spies the joggers.
The girls run.
The jogger runs.
The joggers spy the girls.
The jogger spies the girls.

Once we "know" language X (we have a grammar and a dictionary), we turn
to a description in plain English of the sequence of actions performed by one
particular parser.

The following is one of many possible parsing strategies. Since this is
perhaps the most intuitive one, it will be used as example in this little parsing
exercise. It is called bottom-up parsing: notice that we start building the tree
from the words and the lower branches of the tree before we get to the top
symbol. We will present simultaneously the instructions (in plain text) and the
example parse (in italics).

Our example sentence is: "The girl runs."

1. Read word (from left to right). When al1 words in the sentence have been
read, look in the tree-bag (where al1 potential branches found during the parsing
process are stored) for a tree whose root is S. If there is one, display it to the
user. If not, go to step 4.

1'. '?hen
2. Look it up in the dictionary (this step includes morphological analysis).

- If it is there, find its grammatical category.
2'. '?he" is i n the dictionary: the : Det. We have our j r s t bit o f the phrase
structure tree:

DET
The

3. a. Look in the grammar for a rule whose right hand side starts (from left to
right) with the grammatical category of the word.

b. Do the following to al1 the symbols of the right hand side of the rule found
in step 3 (a). When this step is finished, go back to step 1:

i. Read the next word, look it up in the dictionary, and find its
grammatical category.
ii. If its grammatical category coincides with the following symbol on
the right hand side of the rule, repeat step b.

3'. a. The rule NP Det N has Det as its right hand side. We keep it as our
current rule.

6. current rule: NP 4 Det N
i next word girl . The dictionary has the en? girl: N. We have another
potential branch of the tree.

ii. N coincides with the following symbol of the right hand side o f the rule
after Det, i.e., NP + Det N . Since there are no more symbols left in the
right hand side of the rule, we keep the rule NP 4 Det N in the tree-bag
and we go back to step one. One of thepotential branches is:

DES N
the girl

l. Next word : runs.
2. Dictiona y entry: run : Vi. We have a new bit of the tree.

Vi
runs

3. a. rule W + Vi.
6. The rule has no other symbols on its right hand side. We keep it in

the tree- bag,

Vi
runs

4. When al1 words in the sentence have been read, and rules have been found
whose right hand sides had the grarnmatical categories of words, the tree-bag
has separate rules that still have to be combined. The next action consists in
finding a rule in the grammar whose right hand side symbols are left hand side
symbols of the rules contained in the tree-bag. Rules in the grammar that
match this specification are kept in the tree-bag.

The process finishes when a rule is found whose left hand side is the top
node (Sentence). Then the syntactic tree is ready to be displayed.
4: Relevant contents of our tree-bag:

NP + Det N
VP + Vi

18 Links & Letters 1, 1994 Anna Espunya i Prat

Left hand sides: W and NP. h there a rule in the grammar which looks like
X + W NP? The answer is no. However, there is a rule in the p m m a r that looks
exactly like X + NP W, namely S + NP W. We keep it in the tree-bag and
since its le$-hand side is the start symbol S, a parse h a been foundfor the sentence.

A
A 7

DET N Vi
the girl runs

We have oversimplified this illustration of a parsing process by our toy
program for the sake of clarity. Al1 computer programs have to consider al1
cases, and we skipped the negative ones and also those situations in which more
than one rule fulfills the conditions. For instance, what would happen if
our grammar did not contain a rule that combines a Determiner and a Noun
into a Noun Phrase? What happens if there are two rules instead of one (e.g.,
N P + Det N, and NP + DET N AP), and the parser follows the wrong one
first? 1s there a way back from a wrong choice? Al1 these questions and others related
to them are taken into consideration when "real" parsers are implemented.

M e r parsing a sentence of language X, we should go back to English and
the realization of the dificulties of parsing a natural language. Several facts
deserve a comment.

l . The parser did not check agreement between the subject and the verb. Thus
a sentence like "The girls runs" is possible in language X. In English there
is agreement in person and number between subject and verb, in number
between certain determinen and nouns, in person, number and gender
between reflexive objects and their subjects, etc. Agreement checking is
important in the parsing process and al1 systems have mechanisms to
perform it.

2. The parser did not know whether al1 the obligatory arguments of the verb
were in the sentence. Checking that the subcategorization requirements of
the verb are met and that no extra arguments are added is a necessary step
in parsing. Subcategorization frames are usually included in the lexical
entries for verbs.

3. The grammar may have contained two rules, both equallyvalid for the parser
at a given time. Suppose the grammar has the following rules:
(a) NI? + Det N-bar
(b) NP + Det N-bar PP
(c) N-bar + N PP

Computational Linguistics: a brief introduction Links & Letters 1, 1994 19

and suppose the parser has to provide an analysis for "The young man with
the camera in the car". Once the parser has identified the PP "in the car",
it has to choose between rules (b) and (c). In the first case, the young man
is in the car. In the second, the young man may not be in the car, only the
camera is.
Prepositional Phrase attachment is a case of global structural ambiguity: the
parser correctly assigns two or more structures to a single sentence. Other
sources of global structural ambiguity in English are coordination (e.g., "old
men and ladies" gives two possible analyses) and noun-noun compounding.
Parsing a globally unambiguous sentence may be affected by another type of
structural ambiguity consisting in building up representations of consti-
tuents that ultimately do not lead to the final analysis. For example, when
going through the sentence "The student whose advisor is a famous linguist
read three books every week", the parser may decide that "a famous linguist
read three books every week" is a sentence, a hypothesis that will have to be
abandoned without any positive result. This time-wasting exploration is
called local ambiguity.

4. The final observation is that the lexicon may have contained two words with
the same form and different meanings, of the sarne or different grammatical
category. In English many nouns can be used as verbs. A word forrn like
"books" could be a 3rd person singular present tense verb form, or a plural
noun. This is called lexical ambiguity. Often it gives rise to structural
ambiguity, as in the typical example "1 saw her duck", where the grammatical
categories of "duck" involves two rather different structures for the sentence.

The reader might be thinking that human speakers are seldom mislead in our
"parses" by ambiguity. Certainly, there are fewer cases, but we are not free from
them. Try, for instance, to parse this: "The large rocks fe11 off the cliff", and
now this: "The man rocks for three hours in his new concert". However,
humans have one essential advantage: our dynamic knowledge of the world, of
the people and circumstances around us, of what is plausible and what is not.
Up to now, providing computers with a model of the world like ours has proved
impossible. How to represent knowledge dynamically so that it can be used and
updated by computers in problem solving (including natural language use) or
prediction tasks is one of the central issues of Artificial Intelligence.

4.3. Meaning

Extracting the meaning of a sentence is not a straightforward task for a natural
language system. Linguists and philosophers of language tend to distinguish
those aspects of the meaning of an utterance that depend on its purpose and
the context in which it is produced (pragmatic factors) and the semantic aspects
of the sentence uttered, its truth conditions. This section sketches some of the

20 Links & Leners 1, 1994 Anna Espunya i Prat

questions which need to be addressed in the process of extracting the semantic -
factors of the meaning of a sentence.

The first question, and the most important one is "what is (a) meaning ?",
i.e., how should (a) meaning be represented in a computer (a symbol manipu-
lation machine)? The answer is related to how meaning is going to be used. For
example, an interface for a database requires input sentences to be interpreted
as specific commands, since the user wants the database to perform concrete
tasks. The set of possible meanings is the set of commands with al1 necessary
specifications. A system that translates from English to Catalan may be designed
to obtain some sort of representation of the meaning of the English sentence,
so that the Catalan sentence can be produced from that meaning repre-
sentation. The set of possible meanings is much larger and diverse than those
required by the database interface.

Once we know how meaning is used in our system, the next step is asking
ourselves how to obtain it. Extracting the meaning of a sentence is part of the
analysis process. Therefore we need t i consider whether the syntactL structure
obtained in the parsing stage is relevant for the semantic interpretation stage.
Most, if not all, approaches to natural language semantics are based on the
assumption that there is a consistent relation between syntax and semantics. At
the basis of such approaches lies a crucial principle attributed to the philoso-
pher Frege, the principle of compositionality, informally phrased as: "The
meaning of the whole is a function of the meanings of the parts". If we apply
it to sentence interpretation, the meaning of a sentence S depends on the
meanings of its subparts (NP and VP), whose meaning in turn depends on the
meanings of their subparts, e.g. verb and complements for VP. The last elements
of meaning are words and their morphemes.

The philosophical logician Richard Montague developed in his influential
work a natural language semantics based on first order logic which made a strict
application of the compositionality principle (Dowty et al. 198 1) in a rule-by-
rule fashion. His approach was truth-conditional, i.e., the meaning of a
sentence is just its truth value (True or False). For instance, a syntactic rule that
combined a NP and a VP to form a sentence was accompanied by a semantic
rule that combined the meanings of the NP and VP to give the truth value of
the sentence. Thus "John runs" is true if and only if Uohn] is an individual
with the property [runs] .

Several questions arise in a compositional approach to semantics, like the
representation of word meaning (i.e., how do we represent the meaning of
"run"?) or the fact that not everything in the meaning of a sentence is obtained
compositionally. The concept is controversial. Nevertheless, it still underlies
current approaches to natural language semantics.

Truth-conditional semantics and compositionality do not necessarily go
together. Many applications need more than "True" as the meaning of a
sentence. They need al1 information that the sentence conveys. In such cases,

Computational Linguistics: a brief introduction Links & Letters 1, 1994 21

meanings are represented in unambiguous artificial languages called Meaning
Representation Languages (MRLs). Once the meaning of the natural language
sentence is given an unambiguous representation in the MRL, it is ready to be
used by any application that uses the same MRL. For instance, a railroad
company may give information to its customers automatically just with one
phone call. The computer program (application) would analyse the customer's
request, find its meaning and translate it into a query for the timetable and
destinations database in the MRL. The answer could then be translated back
from the MRL into natural language and given to the customer in spoken form
through a speech synthesizer.

5 . Final remarks

The section devoted to parsing introduced the problem of ambiguity. Solutions
to the problem have occupied the minds and the time of computational
linguists. Lexical ambiguity (one word form with more than one sense) has
traditionally been overcome by making dictionaries that ate specific to the
domain of the project. For instance, in a translation project of medical texts,
some word senses may never be necessary. Having them in the lexicon gives rise
to unnecessary arnbiguity. A less restrictive approach is using information from
collocations and selectional restrictions to distinguish word senses. Such an
approach is also effective against structural arnbig;ity.

One well known source of structural ambiguity is PP attachment. In "cut
the meat with the sharp knife" (example inspired by Gazdar and Mellish 1989),
the PP "with a sharp knife" may be attached at the N-bar node (as a modifier
of "meat") or, alternatively, to the VP node as an instrumental argument of the
verb "cut" . Suppose (1) the lexical entry of "cut" included selectional restric-
tions informatrin (i.e., that it may také an instrumental argument), (2) that
"meat" does not have modifiers of the instrumental type and (3) that the entry
of "knife" is categorised as an "instrument". By checking the selectional
restrictions of words, the PP attachment to "meat" could already be discar-
ded.

With the growing tendency to improve parsing by incorporating semantic
information (from subcategorization frames that include thematic roles to
selectional restrictions and collocations), eficient organization of the lexicon
has become an important issue in Computational Linguistics.

Finally, to number but a few of the most challenging areas in Computational
Linguistics, we should mention the treatmenr of time, tense and aspect;
anaphora, ellipsis, coordination; speech acts, the intentions of the speaker; and,
why not, metaphor, irony, and humor.

22 Links & Letters 1, 1994 Anna Espunya i Prat

6. If you want to read more

Gazdar and Mellish (1989), Natural Language Processing. An Introduction to
Computational Lingusitics, has an extensive bibliography on Natural Language
Processing issues classified into areas, with comments on the difficulty and
relevance of the works. Grishman, R. (1 986) Computational Linguistics. An
Introduction, is also a comprehensive introduction to the field, less pro-
gramming oriented than ~ i d a r and Mellish.

Since the background of our readers is related to Linguistics more than Logic
or Mathematics, they may be interested in the status of Syntax in Computa-
tional Linguistics. Winograd, (1 983) Languageasa Cognitive Process, is a classic
introduction to the topic. The book contains exercises and describes techniques
in detail.

Several linguistic theories that underlie many of the current natural language
systems are based on the concept of unification. Three of them are Lexical
Functional Grammar, Generalised Phrase Structure Grammar and Head-Dri-
ven Phrase Structure Grammar. A good introduction can be found in Sells, E
(1 985) Lectures on Contempora y Syntactic Theories. Vol 3 of the CSLI Lectures
on Contemporary Syntactic Theories. Volume No. 4 of the same series provides
a good introduction to the mechanism of unification.

For those with a GB preference, there is parsing more or less faithfully based
on the Principies and Parameters Theory. They can find a variety of articles
and approaches in Abney, S. (ed.) (1988) The MITParsing Volume. Also in
Berwick, Abney and Tenny (eds.) (1 99 1) Principie-Based Parsing. Computation
and Psycbolinguistics. Dordrecht: Kluwer Academic Publishers.

O n the use of logic to represent meaning compositionally: Dowty, Wall and
Peters, (1981). Introduction to Montague Semantics, the first step for any
Computationai Linguistics student.

O n the topic of knowledge representation there is a collection of articles by
Brachman and Levesque (eds.), called Readings in Knowledge Representation.
Gazdar and Mellish (1989) provide extensive references on issues in the
semantics of natural languages (chapter 8) and on the different knowledge
representation formalisms (chapters 1 and 9).

Temporal reasoning (tense and aspect) is covered by several articles in the
journal Computational Linguistics, vol 14.

7. References

BARTON, E. et al. (1 986). Computational Complexity and NLP. Cam-
bridge: MIT Press.

DOWTY, D. et al. (1981). Introduction to Montague Semantics. Dordrecht:
Reidel.

Computational Linguistics: a brief introduction Links & Letters 1, 1994 23

GAZDAR, G. and MELLISH, C. (1989). Natural Language Processing in PRO-
LOG, An Introduction to Computational Linguistics. Wokingham, England:
Addison-Wesley.

GRISHMAN, R. (1 986). Computational Linguistics. An Introduction. Cam-
bridge: Cambridge University Press.

KARTTUNEN, L. (1983). K7MMO: A General Morphological Analyser. Texas:
Texas Linguistic Forum 22.

WINOGRAD, T. (1 983). Language as a Cognitive Process. Vol 1: Syntax. Reading,
Ma: Addison-Wesley.

