Revistes Catalanes amb Accés Obert (RACO)

The Triassic-Liassic volcanic sequence and rift evolution in the Saharan Atlas basins (Algeria). Eastward vanishing of the Central Atlantic magmatic province.

A. Meddah, H. Bertrand, A. Seddiki, M. Tabeliouna


We investigate the Triassic-Liassic sequence in ten diapirs from the Saharan Atlas (Algeria). Based on detailed mapping, two episodes are identified. The first one consists of a volcano-sedimentary sequence in which three volcanic units were identified (lower, intermediate and upper units). They are interlayered and sometimes imbricated with siliciclastic to evaporitic levels which record syn-sedimentary tectonics. This sequence was deposited in a lagoonal-continental environment and is assigned to the Triassic magmatic rifting stage. The second episode, lacking lava flows (post magmatic rifting stage), consists of carbonate levels deposited in a lagoonal to marine environment during the Rhaetian-Hettangian. The volcanic units consist of several thin basaltic flows, each 0.5 to 1m thick, with a total thickness of 10–15m. The basalts are low-Ti continental tholeiites, displaying enrichment in large ion lithophile elements and light rare earth elements [(La/Yb)n= 2.5-6] with a negative Nb anomaly. Upwards decrease of light-rare-earth-elements enrichment (e.g. La/Yb) is modelled through increasing melting rate of a spinel-bearing lherzolite source from the lower (6–10wt.%) to the upper (15–20wt.%) unit. The lava flows from the Saharan Atlas share the same geochemical characteristics and evolution as those from the Moroccan Atlas assigned to the Central Atlantic magmatic province. They represent the easternmost witness of this large igneous province so far known.

Text complet: HTML (English)