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Abstract 
In this paper, a new method for image deformation is presented. It is based upon decomposition of the deformation 
problem into basic physical laws. Unlike other methods that solve a differential or an energetic formulation of the 
physical laws involved, we encode the basic laws using computational algebraic topology. Conservative laws are 
translated into exact global values and constitutive laws are judiciously approximated. In order to illustrate the 
effectiveness of our model, we deal with both small- and large-scale deformation, utilizing elasticity theory and the 
viscous fluid model, respectively. The proposed approach is validated through a series of tests on optical flow 
estimation and image registration. 

 
Key Words: image deformation, EDP, basic physical laws, computational algebraic topology, viscous fluid 

model, elasticity, optical flow, image registration. 
 

 

1 Introduction 

Physics-based deformation has been gaining in popularity since the introduction of active contours by 
Kass et al. [1]. The physics-based deformation problem is solved by combining the basic physical laws that 
constitute the fundamental equations of continuum mechanics. These equations may be developed in two 
separate but essentially equivalent formulations. One, the integral or global form, derives from a 
consideration of the basic principles being applied to a finite volume of the material. The tessellation of 
space into finite volumes using the finite elements method (FEM) or the finite volumes method (FVM) gives 
rise to discrete equations that can be directly implemented if the physical space is discrete in nature, as in the 
case of an image. The other, differential or field approach, involves equations resulting from the basic 
principles being applied to a very small (infinitesimal) element of volume. As a result of the continuum 
assumption, field quantities such as velocity and displacement which reflect the mechanical or cinematic 
properties of continuum bodies are expressed mathematically as continuous functions, or at worst as 
piecewise continuous functions, of the space and time variables. Moreover, the derivatives of such functions, 
if they are considered at all, should be continuous.  In practice, it is often proposed to derive the field 
equations from their global counterparts instead of using the global forms directly. The convenience of the 
differential forms often argues in favour of this. However, the major drawback of such an approach when 
dealing with the deformation problem is that the description of the material will be accurate only if the 
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displacement and velocity fields vary slowly over the size of the elements used [2]. This drawback arises 
directly from the use of a differential formulation of the physics-based laws involved. Indeed, field equations 
in a differential formulation are subject to restrictions imposed by derivability, restrictions that are not 
related to the physical phenomenon investigated.  

In this paper we introduce a new formulation of physics-based image deformation. The proposed 
formulation is based on the computational algebraic topology (CAT) based image model introduced by Ziou 
and Allili [3]. The CAT-based image model offers efficient tools that allow the encoding of global values 
arising from physical laws over volumes, surfaces, etc. In our model, we propose to derive the equations 
governing the deformation directly for a discrete volume, not for an infinitesimal point, using the basic laws 
instead of the differential equations. In fact, we will show that there is no need to write the equilibrium 
balance for an infinitesimal point, thereby introducing a differentiability restriction, when an equilibrium 
holds for a whole region. In this sense, we use a real discrete formulation where the equilibrium is expressed 
in finite terms. Consequently, the CAT-based image deformation can be applied whenever a variable is not 
differentiable, for example when the displacement field undergoes large variations. The proposed model is 
profoundly different from the method presented in the literature, since it requires neither energetic functional 
nor their differentiations to describe image deformation. 

Both the small- and large-scale deformation cases will be taken into account.  Small-scale deformation is 
carried out by assuming the image to be a perfect elastic solid; large-scale deformation is achieved by 
assuming the image to be a perfect viscous fluid. The proposed approach is validated through a series of tests 
on optical flow estimation and neuroanatomy registration. The paper is organized as follows. In the next 
section we summarize the CAT-based image model. Section 3 is devoted to some physical concepts that are 
useful in understanding the conservation of momentum principle and decomposing the deformation problem 
into basic laws. In section 4, the CAT-based image model is used to encode the physical laws. Applications 
and experimental results are presented in section 5. Finally; we provide a conclusion in section 6. 

2 The CAT-based image model 

In this section we give a brief overview of the CAT-based image model introduced by Ziou and Allili [3]. 
In this model, an image is composed of two distinctive parts: the image support and some field quantity 
associated with it. The image support is a complex of unit cells, usually called pixels. A pixel of dimension q 
is called a q-pixel. Hence, the pixel 2ℜ⊂γ  in Figure 1 is a 2-pixel. The boundaries of γ  are 1-pixels, 
referred to by us as the 1-faces of γ. Similarly, the boundaries of each 1-pixel are 0-pixels, which we refer to 
as 0-faces. 

 

Fig. 1: A 2-pixel γ and its boundaries 

A natural orientation is assumed in order to perform algebraic operations on the fields associated with 
each pixel (see Figure 1). Suppose that γ denotes a particular positively oriented q-pixel. It is natural to 
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denote the same pixel with opposite orientation by –γ. A cubical complex in nℜ is a finite collection K of q-
pixels such that every face of any pixel in K is also a pixel in K. In addition, the intersection of any two 
pixels in K is either empty or a face.  

In order to write the image support in algebraic form, we introduce the concept of chains. Any set of 
oriented q-pixels of a cubical complex can be written in algebraic form by attributing to them the coefficient 
0,1 or -1, indicating respectively that they are not in the set or should or should not be taken with positive 
orientation. Given a topological space nX ℜ⊂  in terms of a cubical complex, we get a free Abelian group 

( )XCq  generated by all the q-pixels. The elements of this group are called q-chains and they are formal 

linear combinations of q-pixels. A formal expression for a q-chain cq is  ∑ ∈
= K iiq i

c
γ

γλ , where Ζλ ∈i . 

The last step needed for the description of the image support is the introduction of the concept of a 
boundary of a chain. Given a q-pixel γ, we define its boundary, γ∂ , as the (q-1)-chain corresponding to the 
alternating sum of its (q-1)-faces. The sum is taken according to the orientation of the (q-1)-faces relative to 
the orientation of the q-pixel. We say that a (q-1)-face of γ is positively oriented relative to the orientation of 
γ if its orientation is compatible with the orientation of γ. By linearity, the extension of the definition of a 
boundary to arbitrary q-chains is easy. For instance, in Figure 1, the boundary of the 2-pixel γ  is -a-b+c+d. 

In order to model the pixel quantity over the image plane, we look for an application fq : Cq(X) → nℜ , 
which associates a global quantity with all q-pixels, where nq ≤ . The application must satisfy the following 
condition: 

( ) ( )iqi iii iq ff γλγλ ∑∑ =  

which means that the sum of the quantities generated within each q-pixel is equal to the quantities 
generated within all q-pixels. The resulting application fq is called a q-cochain and may be any mathematical 
entity, such as a scalar or a vector that is defined over our complex.   

Finally, let’s define a generic operation that can be instantiated depending on the problem we are dealing 
with. The generic operation should specify the algebraic relationship between the quantities (i.e., cochains) 
associated with the faces of a q-pixel. It should be recalled that the boundary operator gives the relationship 
between the (q-1)-chain and the q-chain. Similarly, the relationship between the q-cochain and the (q+1)-
cochain is given by the coboundary operator δq : Cq →  Cq+1, where Cq is the Abelian group of q-cochains. 
Given a (q+1)-chain γ, this operator is defined by 

( ) ( )γγδ 1+∂= qqqq ff    

The coboundary is defined as the signed sum of the physical quantities associated with the q-faces of γ. 
The sum is taken according to the relative orientation of the q-faces of the (q+1)-pixels of γ. 

 

3 Physical Modeling of the Deformation Problem 
 

The first step consists of deriving the conservation of momentum law, which establishes the relationship 
between the external forces applied to a material and the resulting deformation. Consider a material, M, 
subject to a system of external forces, denoted by extF

r
. A system of internal forces, dVF int  

 ∫∫∫ ⋅∇=
Ω

σ
rr

, 

will be developed to counterbalance extF
r

. In order to describe the dynamic behaviour of the material, we 
use Newton’s second law, which states that the resultant force acting on a body, with a density of material ρ, 
moving at velocity vr  is equal to the rate of change over time of the linear momentum vρ . Hence 
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dVbdVFFdVv
dt
d extint    

   ∫∫∫∫∫∫∫∫∫ +⋅∇=+=
ΩΩΩ
ρσρ

rrr
 (1) 

 

where b  describes the acceleration field and [ ]ijσσ =  is the 3 by 3 stress tensor. The elements [ ]ijσ  of the 
stress tensor are defined as the limit of the internal force per unit of area as the area shrinks to zero [2] (see 
figure 2). 

  

Fig. 2: Stress components 

In what follows, we will focus on the equilibrium state of the material. Hence, solving the deformation 
problem will be equivalent to determining the material state after the deformation has been achieved. For an 

elastic material, equilibrium is reached when 0
rr

=v . A viscous fluid is said to be in equilibrium if 0
rr

=
dt
vd . 

Hence, the conservation of momentum equation for both an elastic material  and a viscous fluid can be 
rewritten at equilibrium as follows:  

 

( ) 0  FF 
 

extint rrrr
=+⋅∇=+ ∫∫∫Ω ρσ dVb  (2) 

 

Note that this equation is a conservative equation, which provides a direct link between the external 
forces dVb 

 ∫∫∫Ω ρ and the internal forces dV 
 ∫∫∫ ⋅∇
Ω

σ
r

. 

The stress tensor is related to the strain tensor by the constitutive law which is local by nature and which 
defines the behaviour of the material when subject to stress. We propose to use a unified formulation of 
Hookes law that is valid for both elastic materials and viscous fluids. This formulation is given as follows: 

  

( )( )[ ] µεκελσ 2+−= Idptr  (3) 

 

where λ, µ and κ are material constants, p is the pressure, tr is the trace operator, Id is the identity tensor, and 
ε  is the strain tensor. The Strain defines the change in configuration variable in a given direction and is 
given [4]: 
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⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂

∂
+

∂
∂

=
i

j

j

i
ij xx

ψψ
ε

2
1 , 321 ,,j,i =  (4) 

where the configuration variable ψ
r

is instantiated depending on the problem we are dealing with. It 
describes the displacement in case of elastic materials and the velocity in case of viscous fluids. In the 
reminder of this paper, we will consider another tensor d, where 

( ) ( ) ( ) ⎟
⎠
⎞⎜

⎝
⎛ ∇∇∇=∇=

TTT
,,d 321 ψψψψ
rrrrr

  (5) 

It is easy to see that ε is the symmetric part of d, that is, 
2

Tdd +
=ε .  

Equations (2), (3), and (5) express the three steps needed to describe how the external forces are related to 
the configuration variable. As shown in figure 3, equation (2) links the external forces to the internal forces, 
expressed in terms of stress; equation (3) links the stress to the strain; and equation (5) links the strain and 
the configuration variable.  

 

 

 

 

          

 

 

 

 

 

 
 

(a)         (b)                             (c) 
   

Fig. 3: a) kinematic equation, b) constitutive equation, c) conservative equation 

 

 

4 CAT-based Formulation of the Deformation Problem 
 
The conservative laws involved are: the conservation of momentum in equation (2) linking the external 

forces to stress; and the strain-configuration variable relation in equation (5). In the context of CAT, the 
configuration variable and the strain quantities are associated with a complex describing the image support 
configuration. This complex is called pK and it is positioned in such a way that its 0-pixels are centered on 
the image pixels (figure 4-a). Besides, the external forces and stress which describe the dynamic state of the 
material are associated with a dual complex sK . This complex is positioned in such a way that its 2-pixels 
coincide with the image pixels (figure 4-a).  A 2-pixel Fγ from sK intersects four 2-pixels of pK . This 
construction allows us to write the equilibrium equation for each 2-pixel Fγ . This involves examining and 
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collecting the contributions of each portion of 2-pixels from pK surrounding Fγ . In this way, equilibrium 
relations are established over Fγ directly in a discrete form, without approximation. 

In order to encode the strain-configuration variable relation in equation (5), consider a 2-pixel Pγ of pK  
as shown in figure 4-b. The strain tensor d can be modeled as a 1-cochain 1D  positioned on the 1-faces 

iDγ of Pγ with #*iD xx −=∂γ  (figure 4-c). Thus 

( ) ∫∫ ∇== *

#iD
i

x

xD
i dldld   1 ψγ

γ

rr
D    (6) 

 

Since the configuration variable is known only at the 0-faces of Pγ , it is modeled as a 0-cohain, noted 

0Ψ , positioned on the 0-faces iDγ∂  . By evaluating the line integral in equation (6), it could be shown that 
the cochain 1D   is the coboundary of 0Ψ . So that 

( ) ( ) ( ) ( ) ( )#
i

*
i

D
i

D
i

D
i xx

ii 00001  ΨΨΨΨD −=∂== γγδγ  (7) 

which is a discrete representation of equation (5). 
 

 
(a)      (b)     (c) 

Fig. 4: a) Complexes Kp and Ks, b) cochain 1D  , c) cochain 0Ψ  

 

In order to express the conservation of momentum in equation (2), consider a 2-pixel Fγ  from sK as 
shown in figure 4-a. The external forces over the surface of Fγ  are expressed as a 2-cochain ( )Fγ2F .  In the 
equilibrium state, this cochain is calculated from equation (2) by:  

 

( ) dSdSbF   
FF

2 ∫∫∫∫ ⋅∇−==
γγ

σργ
r

F  (8) 

 

Applying the divergence theorem on equation (8), we have 

( ) ∑ ∫∫
=

∂
−=−=

4

1
2     

i
SF

iS
i

F
dlndln

γγ
σσγ
rrF  (9) 

where 
iSγ is the ith 1-face of Fγ  and 

iSnr is the normal vector to 
iSγ .This allows us to define the stress 

tensor in equation (9) as a 1-cochain, as follows: 

( )iD
i γ1D  ( )#0 xiΨ  

( )∗xi
0Ψ  ( )

1

1
1 DγD  

( )
2

2
1 DγD

( )
3

3
1 DγD  γ

( )
4

3
1 DγD  

sK  

pK  
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( ) ∫=
iS

ii
dlnSS

i
γ

σγ   1
rS    (10) 

The 1-cochain i
1S  is positioned on the 1-face 

iSγ . The cochain 2F  is the coboundary of 1S , so that 

( ) ( ) ( ) ( )∑
=

−=∂−=−=
4

1
1112

i
S

i
FFF i

γγγδγ SSSF   (11) 

which is the discrete representation of equation (2).  

Since Fγ  intersects four 2-pixels of PK , we use four approximation functions 321 σσσ ~,~,~ and 4σ~ , 
which describe the stress tensors on each 2-pixel surrounding Fγ . These functions are used to build the stress 
cochains in equation (11):   

( ) ∫∫
−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

0

2

212
2

2

0
212

11
1   

2
  

2
AH

AD

S ,dxnx,AB~dxnx,AB~
i

rr
σσγS  

( ) ∫∫
−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=

0

2

121
3

2

0
121

22
1   

2
  

2
AF

AB

S dxnAH,x~dxnAH,x~
i

rr
σσγS  

( ) ∫∫
−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=

0

2

232
3

2

0
232

43
1   

2
  

2
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AD

S ,dxnx,AF~dxnx,AF~
i

rr
σσγS  

( ) ∫∫
−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

0

2

141
4

2

0
141

14
1   

2
  

2
AF

AB

S dxnAD,x~dxnAD,x~
i

rr
σσγS  

The strain tensor in the Hooke’s law is replaced by a local piecewise approximation, so that for each 1-
face 

iDγ of Pγ , equation (3) becomes: 

( )T
T

d~d~Ipd~d~tr~ ++
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ +
≈ µκλσ

2
  (12) 

where the “~” sign stands for a local approximation of a given variable.  

In order to express equation (12) at a local level, the strain tensor d~ must be calculated for each location 
within Pγ . Since d~ is derived from the configuration variable ψ

r
(see equation (5)), the latter must be locally 

known. In the previous sections, the 0-cochain 0Ψ was associated with the 0-pixels of pK ; hence, ψ
r

 is 
derived using a bilinear interpolation of order 1 over Pγ . The bilinear interpolation of 0Ψ over Pγ  can be 
expressed as follows [5]:  
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where the configuration variable at the pqth  0-pixel is given by ( )Tpq,pq,pq , 21 ψψψ =
r

. Finally, the 

external forces cochain can be rewritten in terms of the configuration variable on the 0-pixels 
surrounding Fγ , as follows: 

( ) ∑∫
=

−=
4

1
2   

i
iF

iS
dln~

γ
σγ
rF   (14) 

Equation (14) can be considered as a linear algebraic system that can be rewritten as the product of a 
matrix encoding the basic physical laws and a vector containing the configuration variable values: 

( )

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
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⎣
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⎥
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,,,
ext

ext

F kkk
kkk

F
F

112

111

012

011

002
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1822212

1812111

2

1
2  

ψ
ψ

ψ
ψ
ψ
ψ

γ
M

L

L
F   = [k][ψ]  (15) 

where [ψ] is a vector whose elements are the configuration variable, on each 0-pixel of pK surrounding 
Fγ , in directions 21  and xx , and [k] is a 2 × 18 matrix that encodes the basic laws in Figure 3. 

⎟
⎠
⎞

⎜
⎝
⎛ +−== λµ

2
3

2
9

2211 ,, kk  

⎟
⎠
⎞

⎜
⎝
⎛ −==== λµ

4
1

4
1

102429131 ,,,, kkkk  

⎟
⎠
⎞

⎜
⎝
⎛ −==== λµ

4
3

4
5

1226211151 ,,,, kkkk  

⎟
⎠
⎞

⎜
⎝
⎛ +======== λµ

8
1

8
3 1821621428217115113171 ,,,,,,,, kkkkkkkk  

⎟
⎠
⎞

⎜
⎝
⎛ +======== λµ

4
1

4
1 1721521327218116114181 ,,,,,,,, kkkkkkkk  

0 11292523212121101614121 ========== ,,,,,,,,,, kkkkkkkkkk  
 

In an image deformation problem, the external forces are calculated from the local image gray level and 
depend on the problem we are dealing with. Knowing the material characteristics λ , µ, and κ, the solution of 
the image deformation problem consists of finding the elements of [ψ] in equation (15). To accomplish this 
task, the system in equation (15) must also be solved for all 2-pixels from sK surrounding Fγ . Hence, the 
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algebraic system valid for Fγ  is generalized for all 2-pixels of sK , using a matrix assembling technique. 
Assuming that sK contains mn×  2-pixels, the generalized form can be written as follows: 

 

[Fext] = [K][Ψ]   

 

where [Fext] and [Ψ] are mn×2 vectors whose elements are respectively the values of the external force, 
on each 2-pixel of sK , and the configuration variable, on each 0-pixel of pK , in directions 21  and xx , and 
[K] is a ( ) ( )mnmn ××× 22 matrix that encodes the basic physical laws. The system above can be solved either 
directly or using any iterative scheme. 

In order to study image deformation, one must specify the physical nature of the image. The constitutive 
law in equation (5) is valid for both elastic materials and viscous fluids; hence, it is possible to express the 
deformation in both cases using the unified model introduced in the previous sections.  

 
A) The elastic material case 

 

The constitutive equation for a perfect elastic material is obtained by instantiating the parameters and 
variables in equation (5) as follows: 

⎪
⎪
⎩

⎪
⎪
⎨

⎧

=
=
=
=

0 
 
 
 

0

0

κ
µµ
λλ

ψ ur
r

  (16) 

where ur denotes the displacement field expressed and 00  and µλ are the Lamé constants.  

 
B) Application to a viscous fluid 

 

Unlike an elastic material, a viscous fluid can be continuously deformed, since the internal forces 
developed are not directly linked to the displacements. Hence, such a model allows the image to undergo 
large-scale displacements. The constitutive equation for a viscous fluid is obtained by instantiating the 
parameters and variables in equation (5) as follows: 

⎩
⎨
⎧

=
=

1 
 
κ
ψ vr
r

  (17) 

where vr denotes the velocity field. The parameters µλ  and in equation (5) are called the viscous fluid 
constants. Once the velocity at a given time t is determined, the resulting displacement can be calculated 
using the discrete material equation given by: 

( ) t
T

ttt vuItuu rrrrr  1 ⎟
⎠
⎞⎜

⎝
⎛ ∇−+=+ ∆  (18) 

5 Applications and Experimental Results 
 

Our deformation approach will be first tested in the context of optical flow estimation. In this case, the 
displacement is calculated from equation (15), using an external force that is derived from the optical flow 
constraints. The second application concerns neuroanatomy registration. In this case, the brain tissues are 
assumed to be viscous fluids that are deformed according to equation (15).  
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5.1 Optical flow estimation using elastic deformation 
 

A fundamental problem in the processing of image sequences is the computation of the 2D optical flow 
resulting from the projection of 3D object displacements onto the image plane. The estimated optical flow 
can be used to perform various tasks such as inferring the 3D motion and estimating the camera and scene 
parameters. The more widely cited works on optical flow estimation have been compiled in [6]. In what 
follows, the optical flow will be estimated using the CAT-based image deformation algorithm described in 
section 4. The objective is to derive an external force, which serves to estimate the optical flow through 
equation (15).  

Let 1I  and 2I be two consecutive frames from an image sequence. At a given location ( )21 x,x , we define 
( )

21 xx d,dd =
r

 as being the spatial shift that ensures the best matching between the image structures of 1I  

and 2I . We consider that the best matching should minimize a distance measure (over d
r

) given by the sum-

of-squared difference (SSD). Consider a 2-pixel Fγ  from sK  centered at location ( )21 x,x . The SSD 
corresponding to a shift d

r
 is given as follows: 
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∑
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++++−++=
WVj,i
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   (19) 

 

where ( )⋅V  is the support of a template W centered on ( )21 x,x :   
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⎨
⎧

=
∈++=

   elsewhere        0
   if        1 21

,j,iW
jx,ix,j,iW Fγ   (20) 

The external force in equation (15), which will deform 1I  onto 2I , is defined as being the gradient of the 
distance measure: 
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However, this is not sufficient to yield reliable estimation of optical flow, since the edge information is 
not handled, which may produce a misalignment between contours from 1I  and 2I . We therefore define 
additional distances, measuring the SSD between the first order derivatives of 1I  and 2I  in both 1x  and 2x  
directions:  
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The external force attached with the distances in equations (21) and (22) is thus defined as follows: 
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Let ( ) ( ) ( ) ( )T11
211

T00
210 2121

 and xxxx d~,d~x,xd~d~,d~x,xd~ ==
rr

 be the estimated shift maps using extext FF 10  and 
rr

 

respectively. The next step consists of locally merging these maps to generate a solution d~
r

 that ensures an 
optimal fit between 1I  and 2I  according to equation (19): 
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In order to allow tracking of large displacements between frames, a multi-resolution scheme is used. 
Unlike [7][8] where a coarse-to-fine approach is favored, we propose to compute the shift map at each 
resolution independently and to merge the maps thus obtained, using equation (24). In this way, errors 
occurring at a coarser resolution will not be propagated to finer levels. We examined the performance of our 
algorithm on image pairs (see figure 5) with known motion fields (see left columns of figures 6,7 and 8). The 
translating tree sequence is generated by moving the camera along its X-axis. The diverging tree sequence is 
generated by moving the camera along its line of sight with the focus of expansion located at the center of 
the image. The Yosemite sequence contains translating and diverging motions. 

In all the experiments, the Lamé constants were tuned by trial-and-error process. The values which 
experimentally give the best results are =0λ  5 and =0µ  20. The matching was carried out for three levels 
of resolution corresponding to side lengths of the pK  2-pixels equal to 3, 5 and 7. The estimated flow maps 
are given in the right columns of figures 6, 7 and 8. In order to quantify the accuracy of the maps obtained, 
we computed the angular error and its standard deviation. This measure provides the angular deviation 
between the computed and the correct maps. For each sequence, we compared the accuracy of the computed 
flow map with the best accuracy obtained on the same sequence using the algorithms reported in [6]. (These 
algorithms are described in [9][10][11][12].) The multiple comparisons were motivated by the fact that no 
single algorithm performed best on all sequences. Visual inspection of the obtained results together with the 
accuracy measures provided in table 1 show that our method gives a precise estimation and that the CAT-
based elastic constraint ensures smooth motion fields. Since the diverging tree sequence has a wide range of 
displacements, the estimation of flow map for this sequence could be easily improved by using an external 
force that handles subpixel displacements. 

  
Fig. 5: left: Tree sequence; right: Yosemite sequence 
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Fig. 6: Translating tree, left: ground truth; right: estimated flow map 

  
 

Fig. 7: Diverging tree, left: ground truth; right: the estimated flow map 
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Fig. 8: Yosemite, left: ground truth; right: the estimated flow map 

 
Tab. 1: Mean and standard deviation of the angular error 

 Translating tree Diverging tree Yosemite sequence 

 Mean error Standard 
deviation Mean error Standard 

deviation Mean error Standard 
deviation 

Our method 1.14° 1.09° 2.81° 2.72° 7.80° 7.91° 

Best from [6] 1.25° 3.29° 2.55° 3.67° 10.44° 15° 

 

5.2 2D brain registration using fluid deformation 
 

In neuroanatomy registration, the main objective is to match an image 1I called the template to another 
image 2I  called the study. The study is usually a set of images representing a healthy brain. The registration 
of a patient’s brain onto an atlas consists of finding the set of geometrical transformations that must be 
applied to the atlas to fit the patient’s brain images [13]. Once the transformations are known, all of the 
information contained in the atlas, such as structure names, sizes, locations, and atlas segmentation, is 
mapped onto the patient’s brain images. One of the most cited work in the literature is the viscous fluid 
model proposed by Christensen et al. [14]. In their work, Christensen et al. proposed to solve the following 
PDE:  

( ) ( ) extFvv
r

=⋅∇∇++∇ µλµ 2 .  (25) 

 

An iterative scheme is then derived to solve equation (25) using the successive over-relaxation (SOR) 
with checkerboard update method [14]. This approach will be compared to the CAT-based image 
deformation as described in section 4. Hence, the brain images will be considered as viscous fluids. The 
external force in equation (15), which deforms the template onto the study, is derived from the derivative of 
a Gaussian sensor model and defined as follows: 

( ) ( )( ) 1212211 Ix,xIx,xIF ext
n ∇−−=

rr
 (26) 
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where I∇
r

 is the gradient of I. The external force in the equation above attempt to make edges in the 
template and the study fit. Note that the use of such a force requires the template to be initially aligned with 
the study so that they overlap. Experiments on brain images will be presented below. The resulting 
registration and time processing are compared with those obtained using the SOR algorithm. In all 
experiments, we assume that the template and the study contain the same structures. λ and µ are set at 1 and 
5, respectively. The experiments were performed on a sample of CT scan images measuring 256 × 256 
pixels. The left column in figure 9 shows the templates and the right column the studies. Pairs (A) and (C), 
are not equivalent since they do not contain the same configuration of grey/white matter. The deformed 
templates obtained using the CAT-based algorithm are shown in the middle column. Notice that the 
algorithm accommodates local shape variations and large-scale deformations with a good level of detail. 
However, there are some situations where the algorithm cannot recover the study shape, such as the grey 
matter in pair (A). This is mainly due to violation of the initial assumptions concerning similarity of the 
white/grey matter configuration. A 3D registration can overcome this problem, since the information from 
other slices will make the template and the study match. The second column in table 2 indicates the mean 
and standard deviation of the grey-level difference between the deformed templates and the studies for the 
CAT-based algorithm. The third column indicates the same measures when the SOR algorithm is employed. 
The obtained measures indicate that the CAT-based algorithm yields the best performance in terms of 
accuracy. Moreover, it is important to mention that the CAT-based algorithm takes only 10 iterations to 
perform the deformation, whereas the SOR requires 250 iterations to solve equation (25) and 100 iterations 
to accomplish the registration.  

Tab. 2: Mean and standard deviation of the gray-level difference between the deformed template and the 
study 

 

Experiment Our method SOR method 

A µ = 6.0 σ = 12.6 µ = 10.9 σ = 19.2 
B µ = 7.9 σ = 13.7 µ = 9.7 σ = 18.1 
C µ = 6.8 σ = 13.8 µ = 9.3 σ = 17.2 
D µ = 6.2 σ = 13.0 µ = 9.1 σ = 17.1 
E µ = 6.2 σ = 13.2 µ = 9.1 σ = 16.6 
F µ = 5.9 σ = 12.5 µ = 13.2 σ = 20.1 

 
6 Conclusion 
 

In this paper, we have presented a new approach for image deformation utilizing elasticity and viscous 
fluid models. In the proposed approach, the image model is based on algebraic topology. This allows us to 
decompose the image deformation problem into one of basic physical laws. Cochains encode these laws over 
complexes and are linked together using coboundaries and codual operators. The major advantage of such an 
approach lies in the possibility of solving the deformation problem directly from the exact global forms 
rather than from discrete differential forms. Consequently, errors resulting from the approximation of 
continuous fields (i.e., displacement and velocity) and derivative operators by discrete forms can be reduced. 
Furthermore, the idea of expressing the physics-based deformation in a modular way is very interesting since 
it can be applied to solve other computer vision problems based on a physical interpretation. CAT-based 
deformation under the elasticity assumption was tested successfully for the optical flow estimation. The 
results show that our algorithm yields increased stability and is more efficient than several existing 
algorithms. The same statement is valid for neuroanatomy registration, where a CAT-based viscous fluid 
model was used.  



Bentabet et al. / Electronic Letters on Computer Vision and Image Analysis 0(0):1-7, 2000       131 

(A)  

(B)  

(C)  

(D)  

(E)  

(F)  

 

Fig. 9: Left: template; middle: after viscous fluid deformation; right: study 
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