
3. Experimental results 

 A comprehensive set of benchmark functions [18, 33, 34, 35, 36, 37, 38] has been used to test the 

performance of the proposed algorithm. The Appendix A (Table A1) presents the functions used in our 

experimental study. Such functions belong to two categories: unimodal as well as multimodal. We compared 

the performance of our algorithm against other well-known algorithms, like Differential Evolution (DE) [18], 

Particle Swarm Optimization (PSO) [6] and Artificial Bee Colony Optimization (ABC) [7]. A modified 

version of DE [39] was used in the comparisons. That version improves the robustness and convergence of 

the original version. The algorithms DE and ABC algorithms were configured as suggested in [7, 39], 

whereas PSO was set according to the suggestions provided in [35]. Table 3.1 shows the specific parameters 

used in the experiments, where the notation for population size is the same (��) for each algorithm. The 

stopping criterion used in the experimental part was to evaluate 100,000 times every function from Table A1. 

Each algorithm was programmed in Matlab R2013b, and ran 30 times per function in a PC with an 

architecture based on Intel Core i7-2600k with 8 GB of Ram. 

DE [39] PSO [35] ABC [7] AO 

�� � �� �� �� �� 	 �� �� 
 

50 0.9 0.5 50 1.8 1.8 k/maxIter 50 5 1e-20 

 

Table 3.1 Parameters tuning of each algorithm. 
 

 Several values of size (population, memory) and 
	 were tested with AO, as shown in Table 3.2. 

Some parameter arrangements can produce better values for some groups of functions than others, as it was 

established by the No Free Lunch theorem [Wolpert997]; in fact, this is the main reason to consider the 

development of new proposals of metaheuristic algorithms. 

 
 

config �� 
 �� �� � 

c1 5 1� − 20 3 1 1 

c2 10 1� − 20 3 1 1 

c3 50 1� − 20 3 1 1 

c4 5 1� − 1 3 1 1 

c5 5 1� − 20 4 1 0 

c6 5 1� − 20 0 4 1 

c7 5 1� − 20 1 0 4 

c8 5 1� − 20 8 4 1 
 

Table 3.2 Some configurations tested with AO (� = 100, mofe = 100,000).  

 

As explained before, by every element into the population exist g1+g2+g3 elements into memory (M1,M2, 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 Arrangement of population and memory, considering c1 and c4.  
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and M3): M1 has information related with the best individual obtained from each iteration, M2 retrieves 

information from the average individual, and M3 stores random movements inside the feasible space. As an 

example, Figure 3.1 depicts the arrangement of population and memory that belongs to c1. All configurations 

in Table 3.2 were used with AO to minimize every function from Table A1; the best results after 30 runs 

(highlighted) are presented in Table 3.3. For instance, in the case of c5, where the random part of memory 

(M3) is not considered, the algorithm is capable of finding the best results of f12, f16 and f19, which are 

unimodal, multimodal, and have different limits of the search space. A similar case happens with 

configuration c6 where the part that stores historical information of the best individual found at each iteration 

is removed from memory (M1), and where the data of the average individual (M2) is increased. In this way, 

the best results are obtained for the functions f8 and f20, both with unimodal form, and for f8, with a non 

symmetric search space.  

 

f c1, 5	(7
�) c2, 5	(7

�) c3, 5	(7
�) c4, 5	(7

�) c5, 5	(7
�) c6, 5	(7

�) c7, 5	(7
�) c8, 5	(7

�) 

f1 0.3038 

(0.6620) 

0.0348 

(0.0730) 

12.76 

(11.32) 

2.95 

(3.83) 

0.8024 

(1.30) 

310.49 

(178.51) 

308.26 

(59.57) 

0.2522 

(0.5765) 

f2 5.24e-05 

(2.30e-05) 

0.0016 

(0.0007) 

0.6488 

(0.1354) 

0.0705 

(0.0171) 

0.0014 

(0.0006) 

1.44 

(0.2600) 

0.1186 

(0.0349) 

0.0183 

(0.0074) 

f3 5.8509 

(5.64) 

4.4429 

(1.46) 

167.30 

(21.15) 

23.69 

(8.39) 

8.37 

(12.68) 

130.17 

(43.15) 

23.18 

(10.78) 

12.52 

(3.98) 

f4 0.0018 

(0.0058) 
9.90e-06 

(9.81e-06) 

0.0623 

(0.0146) 

0.0043 

(0.0077) 

0.0114 

(0.0362) 

1.34 

(0.2067) 

0.4776 

(0.1337) 

0.0020 

(0.0027) 

f5 7.15e-07 

(2.66e-06) 

1.19e-09 

(4.46e-09) 

4.28e-08 

(6.67e-08) 

7.94e-06 

(3.99e-06) 

4.47e-07 

(1.41e-06) 

0.1613 

(0.0421) 

0.0198 

(0.0026) 

2.28e-26 

(7.15e-26) 

f6 6.34e-08 

(8.98e-08) 

3.78e-05 

(3.40e-05) 

0.7779 

(0.1618) 

0.0394 

(0.0236) 

3.23e-05 

(1.82e-05) 

44.44 

(27.52) 

0.9944 

(0.4484) 

0.0047 

(0.0037) 

f7 -41842.40 

(13.47) 

-41833.12 

(15.96) 

-39812.09 

(258.88) 

-41845.09 

(20.44) 

-40370.13 

(256.39) 

-39643.94 

(348.71) 

-41881.53 

(4.07) 

-41604.83 

(136.07) 

f8 890.25 

(113.11) 

908.02 

(100.56) 

827.64 

(59.99) 

1018.94 

(71.90) 

802.09 

(87.16) 
411.70 

(175.53) 

1082.30 

(60.57) 

783.76 

(75.72) 

f9 3.19e-07 

(2.10e-07) 

0.0002 

(0.0002) 

4.04 

(1.01) 

0.9255 

(0.4971) 

0.0011 

(0.0016) 

33.33 

(7.76) 

0.3794 

(0.1129) 

0.0675 

(0.0441) 

f10 0.0158 

(0.0514) 

0.0383 

(0.1108) 

5.55 

(1.24) 

9.10 

(2.54) 

9.51 

(2.16) 

23.78 

(3.98) 

0.8006 

(0.1831) 

3.32 

(1.85) 

f11 0.9398 

(0.9120) 

3.9402 

(3.53) 

43.32 

(10.88) 

2.18 

(1.61) 

4.17 

(6.34) 

10.20 

(6.84) 

2.14 

(1.01) 

2.44 

(1.14) 

f12 0.1966 

(0.0399) 

0.2610 

(0.0278) 

0.7430 

(0.0938) 

0.1966 

(0.0279) 
0.1931 

(0.0444) 

0.9182 

(0.2393) 

0.2619 

(0.0289) 

0.2130 

(0.0647) 

f13 1.1388 

(0.3962) 

0.5395 

(0.2805) 

2.00 

(0.4779) 

1.01 

(0.4193) 

1.94 

(0.5758) 

41.46 

(23.54) 

2.28 

(0.6041) 

1.58 

(0.4084) 

f14 0.0002 

(8.54e-05) 

0.0069 

(0.0024) 

1.64 

(0.1859) 

1.05 

(0.1569) 

0.0132 

(0.0023) 

5.10 

(0.7199) 

0.5418 

(0.1163) 

0.1204 

(0.0288) 

f15 2.29e-06 

(1.92e-06) 

0.0012 

(0.0009) 

34.46 

(8.29) 

2.02 

(1.41) 

0.0013 

(0.0010) 

1832.44 

(1053.57) 

50.67 

(19.12) 

0.3889 

(0.1544) 

f16 14.07 

(1.14) 

28.02 

(2.39) 

67.78 

(2.44) 

13.64 

(1.02) 
10.71 

(0.7580) 

18.24 

(2.66) 

29.58 

(1.79) 

13.10 

(1.62) 

f17 0.0032 

(0.0048) 

0.0040 

(0.0073) 

0.0084 

(0.0022) 

0.0023 

(0.0016) 

0.0130 

(0.0101) 

0.0584 

(0.0470) 

0.0050 

(0.0051) 

0.0051 

(0.0028) 

f18 8.33e-10 

(2.35e-09) 

6.04e-12 

(3.12e-11) 

2.01e-09 

(5.46e-09) 

3.76e-06 

(2.61e-06) 

1.16e-15 

(3.68e-15) 

1.21 

(1.11) 

0.1127 

(0.0269) 
3.30e-25 

(1.03e-24) 

f19 3.27 

(0.498) 

3.29 

(0.3341) 

6.32 

(0.3831) 

3.25 

(0.3238) 

3.00 

(0.3541) 

5.68 

(1.15) 

4.21 

(0.2898) 

3.26 

(0.2790) 

f20 125661.19 

(17326.6) 

146656.89 

(15114.84) 

180936.07 

(15873.87) 

121219.84 

(16193.88) 

152393.77 

(26302.53) 
15039.99 

(9574.81) 

128216.9 

(10023.1) 

139308.8 

(21686.97) 

f21 0.0047 

(0.0019) 

0.0050 

(0.0018) 

0.1108 

(0.0226) 

0.0449 

(0.0092) 

0.0183 

(0.0022) 

0.4746 

(0.1273) 

0.0358 

(0.0045) 

0.0185 

(0.0038) 

f22 6.06e-27 

(1.17e-26) 

3.09e-15 

(2.48e-15) 

0.0250 

(0.0079) 

0.1120 

(0.0444) 

1.04e-25 

(8.40e-26) 

7.57 

(5.42) 

0.2800 

(0.0943) 

3.30e-19 

(4.48e-19) 

 

Table 3.3 Results obtained by AO, considering different parameter configurations. 

 

Particularly, we argue that the average individual is capable to provide complementary information to 

contained into the best one, and therefore provokes a moderate search, by considering clues from every entity 



in the population. As mentioned earlier, in the outcome group corresponding to c6, AO is capable to find the 

best results for functions f8 and f20, compared with the rest of the configurations. Considering the remaining 

functions, c6 does not minimize the functions as well as the other seven configurations. In general, the worst 

configuration was c3. However, such parameter composition improves some of the minimizations (e.g., f5 

with c3 is better than f5 with c1). 

 

f AO ABC DE PSO 

f1 0.3038(0.6620) 43.53(30.39) 59.77(12.63) 107724.17(58676.77) 

f2 5.24e-05(2.30e-05) 0.0144(0.0055) 0.4234(0.1084) 11.19(2.69) 

f3 5.8509(5.64) 14.94(8.12) 23.21(3.84) 355262.35(471828.77) 

f4 0.0018(0.0058) 0.0010(0.0016) 0.2948(0.0817) 28.17(56.73) 

f5 7.15e-07(2.66e-06) 5.81e-07(7.33e-07) 1.47e-05(3.39e-06) 67.26(12.95) 

f6 6.34e-08(8.98e-08) 5.27e-06(7.80e-06) 0.3601(0.0459) 5333.35(6399.39) 

f7 -41842.40(13.47) -38270.86(354.96) -33793.36(744.70) -26554.18(1579.68) 

f8 890.25(113.11) 1345.91(43.31) 245.53(45.32) 2456.11(527.65) 

f9 3.19e-07(2.10e-07) 1.90e-06(1.35e-06) 0.1470(0.0313) 5127.99(2828.48) 

f10 0.0158(0.0514) 16.57(3.72) 13.67(2.85) 474.55(61.68) 

f11 0.9398(0.9120) 0.7217(0.51) 79.46(26.14) 2173.31(1829.98) 

f12 0.1966(0.0399) 2.00(0.3192) 1.11(0.1140) 20.21(36.97) 

f13 1.1388(0.3962) 4.20e-06(6.18e-06) 29.48(0.3172) 5005.31(8583.11) 

f14 0.0002(8.54e-05) 0.0022(0.0007) 0.3760(0.0321) 41.24(19.10) 

f15 2.29e-06(1.92e-06) 5.04e-05(0.0001) 16.49(3.24) 492500.38(357311.67) 

f16 14.07(1.14) 89.34(1.48) 82.81(2.34) 48.96(3.87) 

f17 0.0032(0.0048) 4.75e-07(6.92e-07) 3.36(0.1198) 2.71(1.20) 

f18 8.33e-10(2.35e-09) 4.97e-06(1.30e-05) 0.0004(0.0001) 51.98(16.09) 

f19 3.27(0.498) 11.57(1.13) 14.74(0.5876) 6.01(4.88) 

f20 125661.19(17326.6) 149451.43(12623.75) 206365.91(34650.84) 78313.59(20102.76) 

f21 0.0047(0.0019) 0.1799(0.0939) 0.6697(0.1645) 17.34(9.39) 

f22 6.06e-27(1.17e-26) 3.74e-06(7.33e-06) 0.0803(0.0164) 3150.21(2140.63) 
 

Table 3.4 Minimization results. Values correspond to mean and standard  

deviation of the best so-far values found after 30 runs. 
 

Notwithstanding, we considered c1 as our best parameter configuration, because AO with this arrangement is 

able to find the minimum value in almost the 41% of the functions, compared with c2 and c5 (almost 14% 

each one), c4 and c7 (about 5% each other), and c6 and c8 (roughly 9% everyone); therefore, we employed c1 

as configuration in all the experiments. Table 3.4 shows the outcomes obtained by each algorithm after 30 

independent runs, and the best ones are highlighted in bold. The results are in the format mean, and standard 

deviation. According with the Table, AO gives the best results in the 68% of the functions, and from those, 

57% are unimodal, whereas 43% are multimodal. An important matter is that even though the values 

contained in Table 3.4 were calculated taking for granted a normal distribution, it is in fact necessary to do 

some test to corroborate such assumption; withal, a simpler approach is adopting an analysis which not 

considers a particular distribution of the experimental data. A statistical test of this kind is the Non-Parametric 

Wilcoxon signed rank test [Wilcoxon945], in which it is applied the ranking of the data prior the analysis. In 

the Wilcoxon analysis it is considered a significance level of the 5%, where the null hypothesis states that 

there is no a significant difference of median values obtained by two processes, whereas the alternative 

hypothesis establishes that there is a significant difference among data, and this variation it is not due to the 

randomness inherent to the experiments. In our proposal it was applied the Wilcoxon test over the best values 

that were found at 30 independent runs per function, in order to statistically identify those in which AO gives 

a better performance than ABC, DE and PSO. The aforementioned results are given in Table 3.5, and they are 

analyzed below. By considering the case AO vs. ABC, our proposal shows a better performance in the 86% of 

the functions with a 5% confidence interval, except for f11, f13 and f17, in whose situation ABC is considerably 

better than AO. With respect to DE, our algorithm achieves good responses with the 91% of the functions, 

albeit in f7 and f8, DE is better. Furthermore, PSO compared with AO gives a superior performance in 

approximately 14% of the functions (f13, f19, and f20); however, AO finds better results in the outstanding 

functions.  



 

f AO vs. ABC AO vs. DE AO vs. PSO 

f1 0.0001 2.05e-05 7.77e-05 

f2 4.07e-05 9.13e-05 2.11e-05 

f3 0.0096 0.0001 9.08e-05 

f4 0.0032 1.82e-05 0.0013 

f5 6.23e-05 1.03e-05 1.29e-05 

f6 1.69e-05 3.73e-05 8.24e-05 

f7 7.72e-05 0.9999 4.65e-05 

f8 3.52e-05 0.9999 1.69e-05 

f9 5.08e-05 5.26e-05 7.45e-05 

f10 7.39e-05 1.61e-05 4.05e-05 

f11 0.5484 7.19e-05 1.28e-05 

f12 1.56e-05 3.39e-05 1.29e-05 

f13 0.9999 3.02e-05 0.9794 

f14 3.31e-05 7.19e-05 3.45e-05 

f15 2.22e-05 3.11e-05 5.15e-05 

f16 2.07e-06 1.53e-05 3.26e-05 

f17 0.9999 7.01e-05 1.12e-05 

f18 1.51e-05 3.27e-05 1.38e-06 

f19 4.02e-04 5.67e-04 0.7870 

f20 3.05e-06 7.23e-05 0.9999 

f21 1.50e-05 4.25e-05 8.38e-05 

f22 7.00e-05 1.16e-04 3.04e-05 
 

Table 3.5 p-values produced by Wilcoxon test; comparisons were made between  

AO vs. ABC, DE and PSO, over the best so-far values found in 30 independent runs. 

 

As it can be seen, AO finds better optimization results compared against ABC, DE and PSO, from a statistical 

viewpoint according to the Wilcoxon test. In the last experimental part were completed 30 runs of each 

algorithm per function, where the time to complete 100,000 evaluations was measured (Table 3.6). According 

to the p-values obtained after doing the Wilcoxon test, the time required by AO is significantly lower against 

ABC, considering the 100% of the objective functions, whereas the time used by AO compared with DE is 

lower in the 91% of the cases. 
 

f AO ABC DE PSO 

f1 4.69(0.6012) 5.62(0.3711) 5.46(0.5543) 3.39(0.5795) 

f2 4.99(0.6417) 5.90(0.7675) 5.62(0.5901) 3.72(0.4012) 

f3 4.10(0.5793) 5.15(0.7240) 4.73(0.6661) 2.84(0.3752) 

f4 5.37(0.5508) 6.42(0.4859) 6.01(0.4812) 3.98(0.2573) 

f5 13.62(2.01) 14.26(1.05) 14.16(0.4513) 11.83(0.7850) 

f6 5.31(1.10) 6.43(1.13) 5.71(0.9161) 3.59(0.6987) 

f7 5.76(0.4429) 6.88(0.8796) 6.87(0.8923) 4.31(0.5801) 

f8 4.65(0.1321) 5.77(0.0448) 5.09(0.0759) 3.36(0.2296) 

f9 4.61(0.3609) 5.57(0.4635) 5.04(0.2962) 3.06(0.1857) 

f10 5.29(0.4536) 6.20(0.3545) 5.89(0.2355) 3.93(0.3334) 

f11 13.32(1.40) 14.66(1.76) 14.20(1.33) 11.59(0.8922) 

f12 7.13(0.4137) 8.32(0.4493) 7.82(0.2592) 5.91(0.5734) 

f13 4.59(0.3905) 5.90(0.6316) 5.49(0.7949) 3.23(0.3999) 

f14 5.06(0.3640) 6.16(0.5907) 5.44(0.904) 3.61(0.5937) 

f15 16.61(0.2303) 17.66(0.3023) 17.05(0.1871) 15.00(0.1926) 

f16 4.81(0.6456) 5.64(0.6802) 5.39(0.6544) 3.31(0.4860) 

f17 7.17(0.9957) 8.68(1.29) 8.25(1.17) 5.92(0.8351) 

f18 6.09(0.1622) 7.90(0.7548) 7.50(0.4067) 5.60(0.4918) 

f19 5.73(0.7677) 6.90(0.9608) 6.55(0.9572) 4.10(0.6065) 

f20 15.86(2.44) 17.41(2.21) 16.21(1.65) 14.22(1.67) 

f21 5.45(0.0153) 6.49(0.0671) 6.02(0.0232) 4.00(0.0143) 

f22 5.63(0.0401) 5.98(0.0578) 5.44(0.1188) 3.39(0.0096) 
 

Table 4.6 Mean and standard deviation of time (in seconds) taken by each algorithm over 30 runs. 
 

On the other hand, in every case PSO is faster than our proposal (Table 3.7). By inspection of Tables 3.5 and 

3.7, and from a statistical point of view concerning the Wilcoxon test, we can conclude that our algorithm 

gives similar results than ABC and DE, without adding extra computational complexity. However, even 



though our algorithm gives better results, it also increases the computational cost, compared with PSO. With 

the purpose of illustrate the behavior of our proposal, in Table 3.8 are shown some results of AO against 

ABC, DE and PSO after a single run. 

f AO vs. ABC AO vs. DE AO vs. PSO 

f1 0.0018 0.0009 0.9996 

f2 0.0090 0.0056 0.9999 

f3 0.0112 0.0178 0.9999 

f4 9.07e-05 0.0001 0.9995 

f5 0.0031 0.0001 0.9978 

f6 0.0044 0.0564 0.9999 

f7 3.50e-05 6.78e-05 0.9999 

f8 3.52e-06 1.11e-05 0.9999 

f9 2.09e-05 5.19e-06 0.9999 

f10 1.31e-05 2.41e-06 0.9999 

f11 0.0001 0.0005 0.9999 

f12 2.43e-06 5.23e-06 0.9999 

f13 1.00e-05 1.56e-06 0.9999 

f14 1.36e-06 2.32e-05 0.9999 

f15 4.66e-05 8.20e-05 0.9999 

f16 6.92e-06 0.0016 0.9999 

f17 0.0001 0.0019 0.9999 

f18 1.51e-05 3.27e-06 0.9999 

f19 1.05e-05 0.0009 0.9999 

f20 2.60e-06 0.0016 0.9999 

f21 1.50e-05 3.25e-05 0.9999 

f22 7.00e-06 0.9999 0.9999 
 

Table 3.7 p-values produced by Wilcoxon test; comparisons were made between  

AO vs. ABC, DE and PSO, over times found in 30 independent runs. 
 

 

Table 3.8 Some convergence graphs after a single run. 
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