
3. Experimental results

 A comprehensive set of benchmark functions [18, 33, 34, 35, 36, 37, 38] has been used to test the

performance of the proposed algorithm. The Appendix A (Table A1) presents the functions used in our

experimental study. Such functions belong to two categories: unimodal as well as multimodal. We compared

the performance of our algorithm against other well-known algorithms, like Differential Evolution (DE) [18],

Particle Swarm Optimization (PSO) [6] and Artificial Bee Colony Optimization (ABC) [7]. A modified

version of DE [39] was used in the comparisons. That version improves the robustness and convergence of

the original version. The algorithms DE and ABC algorithms were configured as suggested in [7, 39],

whereas PSO was set according to the suggestions provided in [35]. Table 3.1 shows the specific parameters

used in the experiments, where the notation for population size is the same (��) for each algorithm. The

stopping criterion used in the experimental part was to evaluate 100,000 times every function from Table A1.

Each algorithm was programmed in Matlab R2013b, and ran 30 times per function in a PC with an

architecture based on Intel Core i7-2600k with 8 GB of Ram.

DE [39] PSO [35] ABC [7] AO

�� � �� �� �� �� 	 �� ��

50 0.9 0.5 50 1.8 1.8 k/maxIter 50 5 1e-20

Table 3.1 Parameters tuning of each algorithm.

 Several values of size (population, memory) and
	 were tested with AO, as shown in Table 3.2.

Some parameter arrangements can produce better values for some groups of functions than others, as it was

established by the No Free Lunch theorem [Wolpert997]; in fact, this is the main reason to consider the

development of new proposals of metaheuristic algorithms.

config ��
 �� �� �

c1 5 1� − 20 3 1 1

c2 10 1� − 20 3 1 1

c3 50 1� − 20 3 1 1

c4 5 1� − 1 3 1 1

c5 5 1� − 20 4 1 0

c6 5 1� − 20 0 4 1

c7 5 1� − 20 1 0 4

c8 5 1� − 20 8 4 1

Table 3.2 Some configurations tested with AO (� = 100, mofe = 100,000).

As explained before, by every element into the population exist g1+g2+g3 elements into memory (M1,M2,

Figure 3.1 Arrangement of population and memory, considering c1 and c4.

	 	

	

	

	

	

	

	

	

	

	

	

	

	

1...	

2...	

3...	

4...	

Ns	

1...	

2...	

3...	

4...	

5...	

6...	

7...	

8...	

9...	

10...	

11...	

12...	

13...	

14...	

Ns*g1	

1...	

2...	

3...	

4...	

Ns*g2	

1...	

2...	

3...	

4...	

Ns*g3	

Population	 Memory	of	best	 Memory	of	average	 Random	memory	

and M3): M1 has information related with the best individual obtained from each iteration, M2 retrieves

information from the average individual, and M3 stores random movements inside the feasible space. As an

example, Figure 3.1 depicts the arrangement of population and memory that belongs to c1. All configurations

in Table 3.2 were used with AO to minimize every function from Table A1; the best results after 30 runs

(highlighted) are presented in Table 3.3. For instance, in the case of c5, where the random part of memory

(M3) is not considered, the algorithm is capable of finding the best results of f12, f16 and f19, which are

unimodal, multimodal, and have different limits of the search space. A similar case happens with

configuration c6 where the part that stores historical information of the best individual found at each iteration

is removed from memory (M1), and where the data of the average individual (M2) is increased. In this way,

the best results are obtained for the functions f8 and f20, both with unimodal form, and for f8, with a non

symmetric search space.

f c1, 5	(7
�) c2, 5	(7

�) c3, 5	(7
�) c4, 5	(7

�) c5, 5	(7
�) c6, 5	(7

�) c7, 5	(7
�) c8, 5	(7

�)

f1 0.3038

(0.6620)

0.0348

(0.0730)

12.76

(11.32)

2.95

(3.83)

0.8024

(1.30)

310.49

(178.51)

308.26

(59.57)

0.2522

(0.5765)

f2 5.24e-05

(2.30e-05)

0.0016

(0.0007)

0.6488

(0.1354)

0.0705

(0.0171)

0.0014

(0.0006)

1.44

(0.2600)

0.1186

(0.0349)

0.0183

(0.0074)

f3 5.8509

(5.64)

4.4429

(1.46)

167.30

(21.15)

23.69

(8.39)

8.37

(12.68)

130.17

(43.15)

23.18

(10.78)

12.52

(3.98)

f4 0.0018

(0.0058)
9.90e-06

(9.81e-06)

0.0623

(0.0146)

0.0043

(0.0077)

0.0114

(0.0362)

1.34

(0.2067)

0.4776

(0.1337)

0.0020

(0.0027)

f5 7.15e-07

(2.66e-06)

1.19e-09

(4.46e-09)

4.28e-08

(6.67e-08)

7.94e-06

(3.99e-06)

4.47e-07

(1.41e-06)

0.1613

(0.0421)

0.0198

(0.0026)

2.28e-26

(7.15e-26)

f6 6.34e-08

(8.98e-08)

3.78e-05

(3.40e-05)

0.7779

(0.1618)

0.0394

(0.0236)

3.23e-05

(1.82e-05)

44.44

(27.52)

0.9944

(0.4484)

0.0047

(0.0037)

f7 -41842.40

(13.47)

-41833.12

(15.96)

-39812.09

(258.88)

-41845.09

(20.44)

-40370.13

(256.39)

-39643.94

(348.71)

-41881.53

(4.07)

-41604.83

(136.07)

f8 890.25

(113.11)

908.02

(100.56)

827.64

(59.99)

1018.94

(71.90)

802.09

(87.16)
411.70

(175.53)

1082.30

(60.57)

783.76

(75.72)

f9 3.19e-07

(2.10e-07)

0.0002

(0.0002)

4.04

(1.01)

0.9255

(0.4971)

0.0011

(0.0016)

33.33

(7.76)

0.3794

(0.1129)

0.0675

(0.0441)

f10 0.0158

(0.0514)

0.0383

(0.1108)

5.55

(1.24)

9.10

(2.54)

9.51

(2.16)

23.78

(3.98)

0.8006

(0.1831)

3.32

(1.85)

f11 0.9398

(0.9120)

3.9402

(3.53)

43.32

(10.88)

2.18

(1.61)

4.17

(6.34)

10.20

(6.84)

2.14

(1.01)

2.44

(1.14)

f12 0.1966

(0.0399)

0.2610

(0.0278)

0.7430

(0.0938)

0.1966

(0.0279)
0.1931

(0.0444)

0.9182

(0.2393)

0.2619

(0.0289)

0.2130

(0.0647)

f13 1.1388

(0.3962)

0.5395

(0.2805)

2.00

(0.4779)

1.01

(0.4193)

1.94

(0.5758)

41.46

(23.54)

2.28

(0.6041)

1.58

(0.4084)

f14 0.0002

(8.54e-05)

0.0069

(0.0024)

1.64

(0.1859)

1.05

(0.1569)

0.0132

(0.0023)

5.10

(0.7199)

0.5418

(0.1163)

0.1204

(0.0288)

f15 2.29e-06

(1.92e-06)

0.0012

(0.0009)

34.46

(8.29)

2.02

(1.41)

0.0013

(0.0010)

1832.44

(1053.57)

50.67

(19.12)

0.3889

(0.1544)

f16 14.07

(1.14)

28.02

(2.39)

67.78

(2.44)

13.64

(1.02)
10.71

(0.7580)

18.24

(2.66)

29.58

(1.79)

13.10

(1.62)

f17 0.0032

(0.0048)

0.0040

(0.0073)

0.0084

(0.0022)

0.0023

(0.0016)

0.0130

(0.0101)

0.0584

(0.0470)

0.0050

(0.0051)

0.0051

(0.0028)

f18 8.33e-10

(2.35e-09)

6.04e-12

(3.12e-11)

2.01e-09

(5.46e-09)

3.76e-06

(2.61e-06)

1.16e-15

(3.68e-15)

1.21

(1.11)

0.1127

(0.0269)
3.30e-25

(1.03e-24)

f19 3.27

(0.498)

3.29

(0.3341)

6.32

(0.3831)

3.25

(0.3238)

3.00

(0.3541)

5.68

(1.15)

4.21

(0.2898)

3.26

(0.2790)

f20 125661.19

(17326.6)

146656.89

(15114.84)

180936.07

(15873.87)

121219.84

(16193.88)

152393.77

(26302.53)
15039.99

(9574.81)

128216.9

(10023.1)

139308.8

(21686.97)

f21 0.0047

(0.0019)

0.0050

(0.0018)

0.1108

(0.0226)

0.0449

(0.0092)

0.0183

(0.0022)

0.4746

(0.1273)

0.0358

(0.0045)

0.0185

(0.0038)

f22 6.06e-27

(1.17e-26)

3.09e-15

(2.48e-15)

0.0250

(0.0079)

0.1120

(0.0444)

1.04e-25

(8.40e-26)

7.57

(5.42)

0.2800

(0.0943)

3.30e-19

(4.48e-19)

Table 3.3 Results obtained by AO, considering different parameter configurations.

Particularly, we argue that the average individual is capable to provide complementary information to

contained into the best one, and therefore provokes a moderate search, by considering clues from every entity

in the population. As mentioned earlier, in the outcome group corresponding to c6, AO is capable to find the

best results for functions f8 and f20, compared with the rest of the configurations. Considering the remaining

functions, c6 does not minimize the functions as well as the other seven configurations. In general, the worst

configuration was c3. However, such parameter composition improves some of the minimizations (e.g., f5

with c3 is better than f5 with c1).

f AO ABC DE PSO

f1 0.3038(0.6620) 43.53(30.39) 59.77(12.63) 107724.17(58676.77)

f2 5.24e-05(2.30e-05) 0.0144(0.0055) 0.4234(0.1084) 11.19(2.69)

f3 5.8509(5.64) 14.94(8.12) 23.21(3.84) 355262.35(471828.77)

f4 0.0018(0.0058) 0.0010(0.0016) 0.2948(0.0817) 28.17(56.73)

f5 7.15e-07(2.66e-06) 5.81e-07(7.33e-07) 1.47e-05(3.39e-06) 67.26(12.95)

f6 6.34e-08(8.98e-08) 5.27e-06(7.80e-06) 0.3601(0.0459) 5333.35(6399.39)

f7 -41842.40(13.47) -38270.86(354.96) -33793.36(744.70) -26554.18(1579.68)

f8 890.25(113.11) 1345.91(43.31) 245.53(45.32) 2456.11(527.65)

f9 3.19e-07(2.10e-07) 1.90e-06(1.35e-06) 0.1470(0.0313) 5127.99(2828.48)

f10 0.0158(0.0514) 16.57(3.72) 13.67(2.85) 474.55(61.68)

f11 0.9398(0.9120) 0.7217(0.51) 79.46(26.14) 2173.31(1829.98)

f12 0.1966(0.0399) 2.00(0.3192) 1.11(0.1140) 20.21(36.97)

f13 1.1388(0.3962) 4.20e-06(6.18e-06) 29.48(0.3172) 5005.31(8583.11)

f14 0.0002(8.54e-05) 0.0022(0.0007) 0.3760(0.0321) 41.24(19.10)

f15 2.29e-06(1.92e-06) 5.04e-05(0.0001) 16.49(3.24) 492500.38(357311.67)

f16 14.07(1.14) 89.34(1.48) 82.81(2.34) 48.96(3.87)

f17 0.0032(0.0048) 4.75e-07(6.92e-07) 3.36(0.1198) 2.71(1.20)

f18 8.33e-10(2.35e-09) 4.97e-06(1.30e-05) 0.0004(0.0001) 51.98(16.09)

f19 3.27(0.498) 11.57(1.13) 14.74(0.5876) 6.01(4.88)

f20 125661.19(17326.6) 149451.43(12623.75) 206365.91(34650.84) 78313.59(20102.76)

f21 0.0047(0.0019) 0.1799(0.0939) 0.6697(0.1645) 17.34(9.39)

f22 6.06e-27(1.17e-26) 3.74e-06(7.33e-06) 0.0803(0.0164) 3150.21(2140.63)

Table 3.4 Minimization results. Values correspond to mean and standard

deviation of the best so-far values found after 30 runs.

Notwithstanding, we considered c1 as our best parameter configuration, because AO with this arrangement is

able to find the minimum value in almost the 41% of the functions, compared with c2 and c5 (almost 14%

each one), c4 and c7 (about 5% each other), and c6 and c8 (roughly 9% everyone); therefore, we employed c1

as configuration in all the experiments. Table 3.4 shows the outcomes obtained by each algorithm after 30

independent runs, and the best ones are highlighted in bold. The results are in the format mean, and standard

deviation. According with the Table, AO gives the best results in the 68% of the functions, and from those,

57% are unimodal, whereas 43% are multimodal. An important matter is that even though the values

contained in Table 3.4 were calculated taking for granted a normal distribution, it is in fact necessary to do

some test to corroborate such assumption; withal, a simpler approach is adopting an analysis which not

considers a particular distribution of the experimental data. A statistical test of this kind is the Non-Parametric

Wilcoxon signed rank test [Wilcoxon945], in which it is applied the ranking of the data prior the analysis. In

the Wilcoxon analysis it is considered a significance level of the 5%, where the null hypothesis states that

there is no a significant difference of median values obtained by two processes, whereas the alternative

hypothesis establishes that there is a significant difference among data, and this variation it is not due to the

randomness inherent to the experiments. In our proposal it was applied the Wilcoxon test over the best values

that were found at 30 independent runs per function, in order to statistically identify those in which AO gives

a better performance than ABC, DE and PSO. The aforementioned results are given in Table 3.5, and they are

analyzed below. By considering the case AO vs. ABC, our proposal shows a better performance in the 86% of

the functions with a 5% confidence interval, except for f11, f13 and f17, in whose situation ABC is considerably

better than AO. With respect to DE, our algorithm achieves good responses with the 91% of the functions,

albeit in f7 and f8, DE is better. Furthermore, PSO compared with AO gives a superior performance in

approximately 14% of the functions (f13, f19, and f20); however, AO finds better results in the outstanding

functions.

f AO vs. ABC AO vs. DE AO vs. PSO

f1 0.0001 2.05e-05 7.77e-05

f2 4.07e-05 9.13e-05 2.11e-05

f3 0.0096 0.0001 9.08e-05

f4 0.0032 1.82e-05 0.0013

f5 6.23e-05 1.03e-05 1.29e-05

f6 1.69e-05 3.73e-05 8.24e-05

f7 7.72e-05 0.9999 4.65e-05

f8 3.52e-05 0.9999 1.69e-05

f9 5.08e-05 5.26e-05 7.45e-05

f10 7.39e-05 1.61e-05 4.05e-05

f11 0.5484 7.19e-05 1.28e-05

f12 1.56e-05 3.39e-05 1.29e-05

f13 0.9999 3.02e-05 0.9794

f14 3.31e-05 7.19e-05 3.45e-05

f15 2.22e-05 3.11e-05 5.15e-05

f16 2.07e-06 1.53e-05 3.26e-05

f17 0.9999 7.01e-05 1.12e-05

f18 1.51e-05 3.27e-05 1.38e-06

f19 4.02e-04 5.67e-04 0.7870

f20 3.05e-06 7.23e-05 0.9999

f21 1.50e-05 4.25e-05 8.38e-05

f22 7.00e-05 1.16e-04 3.04e-05

Table 3.5 p-values produced by Wilcoxon test; comparisons were made between

AO vs. ABC, DE and PSO, over the best so-far values found in 30 independent runs.

As it can be seen, AO finds better optimization results compared against ABC, DE and PSO, from a statistical

viewpoint according to the Wilcoxon test. In the last experimental part were completed 30 runs of each

algorithm per function, where the time to complete 100,000 evaluations was measured (Table 3.6). According

to the p-values obtained after doing the Wilcoxon test, the time required by AO is significantly lower against

ABC, considering the 100% of the objective functions, whereas the time used by AO compared with DE is

lower in the 91% of the cases.

f AO ABC DE PSO

f1 4.69(0.6012) 5.62(0.3711) 5.46(0.5543) 3.39(0.5795)

f2 4.99(0.6417) 5.90(0.7675) 5.62(0.5901) 3.72(0.4012)

f3 4.10(0.5793) 5.15(0.7240) 4.73(0.6661) 2.84(0.3752)

f4 5.37(0.5508) 6.42(0.4859) 6.01(0.4812) 3.98(0.2573)

f5 13.62(2.01) 14.26(1.05) 14.16(0.4513) 11.83(0.7850)

f6 5.31(1.10) 6.43(1.13) 5.71(0.9161) 3.59(0.6987)

f7 5.76(0.4429) 6.88(0.8796) 6.87(0.8923) 4.31(0.5801)

f8 4.65(0.1321) 5.77(0.0448) 5.09(0.0759) 3.36(0.2296)

f9 4.61(0.3609) 5.57(0.4635) 5.04(0.2962) 3.06(0.1857)

f10 5.29(0.4536) 6.20(0.3545) 5.89(0.2355) 3.93(0.3334)

f11 13.32(1.40) 14.66(1.76) 14.20(1.33) 11.59(0.8922)

f12 7.13(0.4137) 8.32(0.4493) 7.82(0.2592) 5.91(0.5734)

f13 4.59(0.3905) 5.90(0.6316) 5.49(0.7949) 3.23(0.3999)

f14 5.06(0.3640) 6.16(0.5907) 5.44(0.904) 3.61(0.5937)

f15 16.61(0.2303) 17.66(0.3023) 17.05(0.1871) 15.00(0.1926)

f16 4.81(0.6456) 5.64(0.6802) 5.39(0.6544) 3.31(0.4860)

f17 7.17(0.9957) 8.68(1.29) 8.25(1.17) 5.92(0.8351)

f18 6.09(0.1622) 7.90(0.7548) 7.50(0.4067) 5.60(0.4918)

f19 5.73(0.7677) 6.90(0.9608) 6.55(0.9572) 4.10(0.6065)

f20 15.86(2.44) 17.41(2.21) 16.21(1.65) 14.22(1.67)

f21 5.45(0.0153) 6.49(0.0671) 6.02(0.0232) 4.00(0.0143)

f22 5.63(0.0401) 5.98(0.0578) 5.44(0.1188) 3.39(0.0096)

Table 4.6 Mean and standard deviation of time (in seconds) taken by each algorithm over 30 runs.

On the other hand, in every case PSO is faster than our proposal (Table 3.7). By inspection of Tables 3.5 and

3.7, and from a statistical point of view concerning the Wilcoxon test, we can conclude that our algorithm

gives similar results than ABC and DE, without adding extra computational complexity. However, even

though our algorithm gives better results, it also increases the computational cost, compared with PSO. With

the purpose of illustrate the behavior of our proposal, in Table 3.8 are shown some results of AO against

ABC, DE and PSO after a single run.

f AO vs. ABC AO vs. DE AO vs. PSO

f1 0.0018 0.0009 0.9996

f2 0.0090 0.0056 0.9999

f3 0.0112 0.0178 0.9999

f4 9.07e-05 0.0001 0.9995

f5 0.0031 0.0001 0.9978

f6 0.0044 0.0564 0.9999

f7 3.50e-05 6.78e-05 0.9999

f8 3.52e-06 1.11e-05 0.9999

f9 2.09e-05 5.19e-06 0.9999

f10 1.31e-05 2.41e-06 0.9999

f11 0.0001 0.0005 0.9999

f12 2.43e-06 5.23e-06 0.9999

f13 1.00e-05 1.56e-06 0.9999

f14 1.36e-06 2.32e-05 0.9999

f15 4.66e-05 8.20e-05 0.9999

f16 6.92e-06 0.0016 0.9999

f17 0.0001 0.0019 0.9999

f18 1.51e-05 3.27e-06 0.9999

f19 1.05e-05 0.0009 0.9999

f20 2.60e-06 0.0016 0.9999

f21 1.50e-05 3.25e-05 0.9999

f22 7.00e-06 0.9999 0.9999

Table 3.7 p-values produced by Wilcoxon test; comparisons were made between

AO vs. ABC, DE and PSO, over times found in 30 independent runs.

Table 3.8 Some convergence graphs after a single run.

0 500 1000 1500 2000
10

−2

10
0

10
2

10
4

10
6

10
8

Iteration

f 1*

AO

ABC

DE

PSO

0 500 1000 1500 2000
10

−6

10
−4

10
−2

10
0

10
2

Iteration

f 2*

AO

ABC

DE

PSO

0 500 1000 1500 2000
10

−15

10
−10

10
−5

10
0

10
5

Iteration

f 5*

AO

ABC

DE

PSO

0 500 1000 1500 2000
10

−10

10
−5

10
0

10
5

10
10

Iteration

f 6*

AO

ABC

DE

PSO

0 500 1000 1500 2000
10

−10

10
−5

10
0

10
5

10
10

Iteration

f 9*

AO

ABC

DE

PSO

0 500 1000 1500 2000
10

−10

10
−5

10
0

10
5

Iteration

f 10*

AO

ABC

DE

PSO

0 500 1000 1500 2000
10

−2

10
0

10
2

10
4

10
6

Iteration

f 11*

AO

ABC

DE

PSO

0 500 1000 1500 2000
10

−1

10
0

10
1

10
2

10
3

10
4

Iteration

f 12*

AO

ABC

DE

PSO

0 500 1000 1500 2000
10

−10

10
−5

10
0

10
5

10
10

Iteration

f 15*

AO

ABC

DE

PSO

0 500 1000 1500 2000

10
1.2

10
1.4

10
1.6

10
1.8

Iteration

f 16*

AO

ABC

DE

PSO

0 500 1000 1500 2000
10

0

10
1

10
2

Iteration

f 19*

AO

ABC

DE

PSO

0 500 1000 1500 2000
10

−30

10
−20

10
−10

10
0

10
10

Iteration

f 22*

AO

ABC

DE

PSO

