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Abstract

We present a linear algorithm for the computation of thenilimant change occurring between two color
pictures of a scene. We model the light variations with the Koes diagonal transform and we estimate it
by minimizing a dissimilarity measure between the pieceviisersions of the cumulative color histograms
of the considered images. We also propose a method for ilamiinvariant image recognition based on
our von Kries transform estimate.

Key Words Color Image Analysis, Color Histograms, Illuminant Chasgvon Kries Model, Image Re-
trieval.

1 Color acrossLight

The color of an image recorded by a camera depends on the specte gitilve light illuminating the scene,
on the geometrical and physical conditions of the scene and on the tehitics of the device used for the
acquisition. Therefore, the same scene viewed under two different illumsipaoduces two different color im-
ages. Forinstance, a white object appears white in the daily light, but red #timinated by a red light. In the
human vision system, the illuminant invariance is achieved bydhar constancyrocess. This is a chromatic
adaptation mechanism, that detects and removes possible chromatic domithkilitsr@nant incidents from
the observed scene, so that the same scene under different illuminastsdsed as the same entity [20].
Color is one of the most widely used features in many computer vision fieldsnti&ge retrieval and index-
ing [27], image segmentation [25] and object tracking [10], but its instabiliti1 vespect to changes of light
adversely affects the performances of the algorithms based on its andlgsisvercome this problem, many
methods for discounting the illuminant color sensitivity from an image have Heeeloped. For instance,
the color enhancement algorithms, as the well known Gray-World algorittexgdimprehensive color normal-
ization [16], the Retinex theory [22], [14], and the automatic color enbarent (ACE) [8], discard the color
illuminant dependency by processing the image in the color space andtrairgf its color. In other meth-
ods, like the gamut mapping approaches [3], the color-by-correlatibmigaes [5], and the machine learning
strategies as [6], [9], [1], the color constancy is achieved by comptitiegransformation relating the illu-
minant of the input image and a reference canonical illuminant. The input imdgerefore remapped as it
was taken under the known canonical illuminant. Color constancy canta@ed also without modifying or
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remapping on to a standard reference the input image, but simply by dagdtiby a set of illuminant invariant
features, like the color invariant histograms proposed in [7], [15] 4@ ¢r the edge-based features employed
in [23] and [19]. However, the algorithmic simulation of the human color comtgtanechanism is a hard prob-
lem: generally, the algorithms make strong assumptions circumscribing thei,Udaghypotheses about the
uniformity of the illuminant, the characteristics of the device used for recgrttia scene, the number and the
position of the light sources, the reflectance properties of the materials stéme. Moreover, many methods,
as for instance ACE, use thresholds to be fixed empirically, while the maclsinegrig techniques need for the
choice of a training set and of a training phase, that is often computationxainsive. A comparison of the
most used computational color constancy algorithms is presented in [28348hd

In this work, we propose a novel algorithm for estimating the illuminant chaegarring between an image of
a scene and a re-lighted version of it, so that color constancy is achiguednapping the re-lighted image on
its canonical reference. We assume that the illuminant variation is homageneer the whole image and we
approximate it by the von Kries transform [18]. These hypothesessatavaed by a lot of color constancy algo-
rithms. We represent the colors of each image by the histograms of the ttaeeeds red, green, blue, and we
define apiecewise inversionf the cumulative channels histograms. We compute the von Kries light variation
by minimizing a measure of dissimilarity between the piecewise inversions of thelativeicolor histograms
of the images considered. The color representation by histograms makesttied robust to image rescaling
and in-plane rotating. Our approach is very efficient from the computtjpoint of view, also in comparison
with other techniques discussed in the Sections 4.4 and 4.5: no user inteiactquested, except for setting
up two integer numberd’ and M regarding the color quantization and the algorithm complexity is linear with
respect to the number of image pixels and to the 8am M. Moreover, differently from many color constancy
algorithms requiring the usage of a particular color space like [5], [3].,ddr algorithm works directly in the
RGB color space.

We also illustrate how our estimate can be used for the illuminant invariant imaggnidon. The problem is
stated as follows: given a set of known images, safdrencesand an unseen image, termgaery, we want

to find the reference that, if re-lighted, is the most similar to the query. To sbisgroblem, we firstly com-
pute the von Kries transform possibly relating the query and each neferand then we select the referetice
whose relighted version is the most similar to the query. The similarity we usashdedined in the space of
the piecewise inversion of the cumulative color histograms of the queryfahe ceferences.

The tests carried out on synthetic and real-world datasets showed gdodhpances both for our illuminant
estimate and for its application to image recognition. The paper is organizeflasst Section 2 illustrates
the von Kries diagonal model, Section 3 explains our technique for estimagritjuiminant changes; Section
4 describes the experiments measuring the accuracy on the von Kridsinaestimate; Section 5 presents an
illuminant invariant image recognition strategy based on our estimate of illumiaaiations; finally Section 6
outlines our conclusions and future work.

2 Thevon KriesDiagonal Modd

The response of a camera to the light reflected from a point in a scenéed @oa triplet(pg, p1, p2), with for
eachi =0,1, 2

pi= [ EOVSOIF() dx. (1)
Q

In this formula, ) is the wavelength of the light illuminating the sceiigits spectral power distributiorty the
bidirectional reflectance distribution function (BRDF) of the illuminated stgfeo which the point belongs,
andF; is the spectral sensitivity function of the sensor. The integral rangestbe visible spectrum, i.g2 =
[380, 780] nm.

The BRDF depends on the directions on the incoming and of the reflected lighta Wwide range of matte
surfaces, which appear equally bright from all viewing directions, tiRDB is well approximated by the
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Lambertian photometric reflection model [12]. Moreover, as proved i [24der this assumption, the surface
reflectance can be expressed by a linear combination of three bastimmrﬁi“()\) with weightsoy, k=0, 1,
2, so that equation (1) can be re-written as follows:

pT =WoTl 2)

wherep = (po, p1,p2), o = (00, 01, 02), andW is the 3x3 matrix with entryWy,; = [, E(A)S*(A) E;(\)dA, (,
i1=0,1,2).

The response’ = (p, p},p5) captured under an illuminant with spectral poweris then given byp'? =
W'oT. Therefore, since the spectral reflectance of the surface in the sloes not depend on the illumination,
the responsep andp’ are related by the linear transform

p’ = wWw' ] 'p". 3)

Note that Equation (3) makes sense only when the maikixs not singular, i.e. when the functiods/, S*
andF* (k =0, 1, 2) differ from the null function. Since we assume that the sunfefdectance and the camera
responses are not identically zero, the inversé/dfexists whent’ # 0 for all wavelengths.

The von Kries diagonal model we use in this work, approximates the speetrsitivity of the camera sensor
by the delta function, i.e. it assumes that each sensor responds only gleasavelength of light:F;(\) =
d(A — \;), foreachi = 0, 1, 2. Under this assumption, Equation (3) becomes

E()‘O) / E()‘l) / E()‘Q) /
0 B E'(AQ)p2>

(Po; p1,p2) = ( (4)
i.e. the von Kries diagonal model approximates the change of illuminant mapmng p’ by a simple linear
transformation that rescales each channel independently.

In the following, for each = 0, 1, 2,we sety; := E(\;)[E’()\;)]~! and we refer to the parametess, o; and
o as thevon Kries coefficients

The diagonal model has been proved to be a good approximation for the ilotrechanges [18], especially
in the case of narrow-band sensory systems, and it is assumed by mangauwstancy algorithms, like the
Gray-World and the gamut mapping based approaches.

3 Computing von Kries Transform

In our method, the color of an image is described by the trilet (Hy, Hy, H2) of the distributions of the
sensory responses (red),p; (green)p, (blue). The values gf; range on [0, 255], foi = 0, 1, 2. We refer to
H ascolor distribution whereas we call its componerdisannel distributionsWe consider now a continuous
treatment, that allows to handle straightforward the concepts of piecewisédn inversion. Hereafter we
assume that

255

Hi(z)dr =1, vV i=0,1,2. (5)
0

Let H be a channel distribution. We define the cumulative channel distributidh as the function
® : [0,255] — [0,1] such that ®(z) :/ H(y), (6)
0

wherezx ranges over [0, 255]. Functioh is monotonically increasing, continuous and generally not injective.
In fact if H is zero on an intervall C [0, 255], then theestriction * of ® on J is constant and equal to
®(min(J)). In this case, there exists a partition< ¢, < t2 < ... < t,, of [0, 255] witht, = 0, ¢,, = 255, such

*The restriction of a functiorf: X — Y to a subseb of X is the functionf|s from S to Y such thatf|s(s) = f(s) forall sin S.
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that® is strictly monotonically increasing (resp. constant) onithénterval and constant (resp. strictly mono-
tonically increasing) on th@ +1)th intervaland =0, ... ,n—1. We note tha{0, 1] = U;—o . n—1P([t;, tj+1)),
i.e. the sef®([t;,t4+1)} =0, n—1 iS a partition of [0, 1].

Without loss of generality, we can suppose tids strictly monotonically increasing on thith interval and
constant on thé¢i + 1)th interval. We define the following function:

T [0,1] — [0, 255] ©)

such that the restriction oF to each intervai([t;,¢,41)) is the restriction ofb~1 on [®(¢;), ®(t;11)), i.e. for
eachy,

U(y) =0 (y), YV yed(tytj)). (8)

FunctionV is thepiecewisanversion of the cumulative channel distributiéh It is piecewise continuous and
since it is the inverse of a monotonically increasing function, it is monotonicadiseasing on each interval
[®(t;), ®(tj+1)). This implies that it is integrable too.

If ® is bijective, we simply consider the trivial partitiony[ ¢;] = [0, 255] and we takel = ®~!. Let H and

H' be the distributions of a channel of two imageand’ respectively. If the two images represent the same
scene under two different illuminant, i.e. if there exists (0, +o0o0) such thatH(ix) = H'(x) for eachz in [0,
255], we have thad’(z) = ®(az) and¥’(y) = 2 ¥ (y), forall y € [0, 1]. We estimate the von Kries coefficient
a by minimizing theL? distance between the functiosanda ¥’

5= [ (¥) oW ()2 dy ©
0

In our implementation, the channel distributions are represented by histegraV bins, whereN ranges in
{1,...,256}. Thus Equation (3) becom&3)_, H;(z) =1, for each = 0, 1, 2. The piecewise inversions of the
cumulative distributions are quantized on a gridiéfnodes equi-spaced on the interval [0, 1], so that formula
(9) becomes

= y (Y \2

5= yZ:l [@(M) —a¥ (M)} . (10)

The von Kries coefficient is hence given by
Sy ()
o = .
ot (3) v ()

Note that thel/th bin is excluded from the computation &fIn fact, since the values @f, p1, p2 range in [0,
255], the values ofvg Ry, a1 Gy, aa By that are greater than 255 are cast to 2&8rated pixels Therefore, to
make the estimate of the von Kries coefficients robust (as much as possihlegspect to the pixel saturation,
the Mth value of the function® and¥’ are not considered. However, it is clear that the performancesaissere
by incrementing the number of saturated pixels (see the experiments).

The algorithm for estimating the von Kries coefficients takes as input two imagied/’ and the parameters
N and M for the color quantization. It consists of three step}fifstly it computes the color histograms of
I andI’, then (i) the cumulative histograms and their piecewise inversions, and finalyegtimates by the
equation (11) the von Kries coefficients. The algorithmic complexity of all tapssis linear. More precisely,
for step (), the complexity iSO(N; + Nv), whereN; and N} are the number of pixels of the imagésand !’
respectively; for stepii( itis O(N + M), and for stepi(i) itis O(M). The total complexity of the proposed

approach is therefore linear with respect to the numbers of image pixel® dhe quantization parametehé
andM.

(11)
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4 Performance Evaluation

The accuracy on the estimate of the von Kries diagonal transform hastésted on different synthetic and
real-world databases. In 4.1, 4.2, 4.3 we report the results obtained@ytithetic database TESTS51 [26]
and on the real-world datasets ALOI [21] and BARNARD [28]. In the &ditions 4.4 and 4.5, we present a
comparative analysis of our approach with other methods (BEST-FITdloe transfer technique [4] and the
color constancy methods in [31]).

Each database consists of a set of images taken under a reference iiufreference imaggsand a set of
re-lighted versions of themgst imagep For all the three databases, we measure the accuracy on the estimate
of the von Kries transforni relating each test imagkto the correspondent reference imadges follows:

A=1-L'(I,K”(Iy)), (12)

where L' (I, K¢*'(Iy)) is the L' distance computed on the RGB space betweand the transforni s (I)

of Iy, and K**! indicates the von Kries transform we estimate. This distance has been nedirtalimnge in
[0,1]. Therefore, the closer to A is, the better the estimate of the von Kries transform is. To quantify the
benefit of our estimate, we compared the accuracy (12) with the value

Ao =1- LY, 1), (13)

that measures the similarity of the reference to the test image when no coloreamhent is applied.

The test images of TESTS51 have been generated synthetically by rgdbaliRGB channels of 51 natural
pictures by a set of 11 real numb€s,,} ranging in [0.5, 3.0] (see Subsection 4.1). Therefore, in addition to
the values of (12) and (13), for TESTS51 we measure the precisiore@stimate of the von Kries coefficients
by computing the error

ﬁest
_Tw

Buw

whereg¢t is our estimate of3,,. The closek,, to zero is, the better the accuracy on the determination of the
von Kries transform is. A strictly negative (positive, resp.) value gfindicates that the estimate is greater
(smaller, resp.) than the real coefficient.

For the comparison in Subsection 4.4 we used the mean accuracies (1&)favkhe comparison in Sub-
section 4.5, we use two error measures defined in [31] and detailed next.

We measured the sensitivity of our estimates with respect to the color quantibgtihe mean values of
(12) and (14) (averaged on the number of test images) by varying thesvaf N and M. More precisely,
we consideredV = 256, 128, 64, 32, 16 bins and = 10, 30, 50, 100 bins. We observed that the accuracy
(12) and the error (14) critically depend ovi, while changinglM does not affect significantly the estimation
performances. Therefore, here we discuss the robustness of tuvaneith respect to both the parametérs
and M only for the synthetic dataset TESTS51, while in the experiments on ALOB&ARNARD we fixed
M =100 and we vany.

w=1 V w=0,...,10, (14)

41 TESTS51

The dataset TESTS51 is freely availablengtp://www-cvr.ai.uiuc.edu/ponce _grp/data/ . It
consists of a set of images of 8 different objects and of a set of 51 it#tatgs in which the objects appear
under different conditions (occluded, rescaled, rotated, differéhilyinated, . ..).

In this work, we took the 51 test pictures as references and we gethexaehetically the test images by
changing the color appearance of each reference by the von Knefdrans

Fj, (po, p1,p2) = Buw(po, p1,p2), (15)
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Figure 1: TESTS51 Database: the Ponce’s pictures on left in (a) arith{le been transformed by rescaling
their color channels by (a) 0.6 and (b) 1.8. Their re-lighted versionstare/n on right.

with 3, = 0.5 + 0.25w, andw =0, ..., 10. Some examples are shown in Figure 1.

Figure 2 shows the mean errors (14) and the mean accuracies (1@% Weescolor quantization, fav =
256, 32, 16 anad/ = 10, 30, 50, 100. In this figure, we omit to show the results obtained/ferl28 andV =
64 because they are very similar to those obtainedVier 256. We note that apart from the cake= 10, for
N = 256, the error is negative fgt,, < 1, positive otherwise. On the contrary, féf # 10 and N = 64, 32,
16, the error is positive fof < 1, negative otherwise. This behavior is due to the color quantization and to the
algorithm used for minimizing (9). Clearly, fat,, = 1.0, Fj3,, is the identity function and so the accuracy is 1.0
and the error is 0.0 for every quantization.
Figure 3 shows the mean accuracy (13) and the values of (12) foratiffeolor quantizations. By increasing
Bw, the number of saturated pixels increases too, and consequently thra@con our estimate decreases.
This is more noticeable fas,, > 1.75, i.e. when the brightness of the test images is 1.75 times that of the
correspondent references. The best results are obtain@d o256, and)M = 100: for this color quantization,
the accuracy (12) between the test images and the color-remappezhoefelare on average 10 times smaller
than the value (13) between the tests and the references. No remarifgbéndes are obtained by using =
30, M =50 orM = 100, while forM = 10 the performances are not satisfactory.

4.2 ALOI

The database ALOI is a collection of 110,250 images of 1,000 objects extartler different circumstances.

It is freely available ahttp://staff.science.uva.nl/"aloi/ . Each frontal object view has been
taken under 12 different light conditions, produced by varying therdelmperature of five lamps illuminating

the scene. More precisely, the lamp voltage was controlled 16 lsej x 0.047 Volts withj € J = {110, 120,

130, 140, 150, 160, 170, 180, 190, 210, 230, 25N example of an object view under the 12 different lights

is shown in Figure 4.

For each pair of illuminantg§V;, Vi) with j # k, we took the images captured with lamp voltdgeas ref-
erences and those captured with voltdgeas tests. Therefore, we considered 132 pairs of reference and test
sets.

For ALOI we do not know the actual values of the von Kries coefficiends &pproximate the considered
changes of light. Therefore, we cannot measure the accuracy @stiorates oty; by the formula (14). For
shortness, we report only the values obtained viNtlr 256 bins in the Table (4) at the end of this paper. A
more detailed analysis about the result dependendy @an be found in the Technical Report [32].

Figure 5 shows for all the sets of references and tests the mean actlB8aand the values of (12) whew
= 256. As reported in [32], the mean accuracies do not change rebhatkben N = 128 or N = 64, and the
worst results are obtained fov = 16.

4.3 BARNARD

In this Section we report the experiments carried out on the real-world imaigset [28] downloadable from
http://www.cs.sfu.ca/"colour/
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Figure 4: ALOI: An example of a frontal view of an object of ALOI databaaken under 12 different illumi-
nants.
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This database - that we refer as BARNARD - is composed by 321 pictuveped in 30 categories. Each cat-
egory contains a reference image taken under an incandescent ligahi&ys0MR16Q ¢anonical illuminany
and a number (from 2 to 11) of relighted versions of it (test images) udifferent lights. The illuminant is
specified image by image by a triplgly, p1, p2).

We computed the accuracy of our estimates by the formulas (12) and (A8)e$ults are shown in Figure
6 for different values ofV, while M = 100, while Table 1 shows the estimated coefficients of the von Kries
transform mapping the test images on to the referenced fer256, and\/ = 100.

4.4 Comparison with BEST-FIT and with a Color Transfer Method

When the test and the reference images are related just by an uniforrgecbélight, and no rescaling and
changes of in-plane orientation occur, the von Kries transform appedig the illuminant variation can be
estimated by dest fitmethod (BEST-FIT for short), that we explain here.

Let p;” andp;’ be the sensory responses at ttiepixel of the reference and test images respectively, and let
(pi"); and(p;i*), indicate theirjth componentf =0, 1, 2). By the von Kries mode(p;”); = a;(pi*);, where

«; is thejth von Kries coefficient.

For eacly, BEST-FIT estimates the value @f by the least square method that minimizes the energy functional

> i)y —ajpi')]* (16)
i=1,..., Ny

Here N; denotes the number of pixels in the reference (or test) image.
In order to make the estimates of the von Kries coefficient robust to theasadupixels, from the summation
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Figure 6: BARNARD: accuracies (12) and (13) of our method by vayyin
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9

Table 1: Database BARNARD: estimated von Kries coefficientsMar 256 and)M = 100.

in (16) we exclude the paifgp;”);, (pi’);) in which at least one element is 255.

Differently from BEST-FIT, the color transfer method presented in [4hisariant to changes of size and in-
plane orientation of the images. Like our method, color transfer employs stltistformation about the
color distribution of the images. Color transfer borrows the colors of an @mago an other. This approach
is not tailored for the illuminant problem, but it is a general method largely usé€ebmputer Graphics for
correcting the color of an image with respect to a reference. The algoptbposed in [4] (here denoted by
CT) performs color transfer by means of a simple statistical analysis on toerdiated orthogonal color space
laf [11]. Firstly the RGB responses of the reference imagad of the test imageare converted by a non-
linear transform in théa 5 space. For both the images, the mean values (indicated by the bragketsd the
standard deviations of the channkls, 3 are computed. The mean values are then subtracted from the sensor
responses expressed in tlags coordinates:

r=1- ), o =a—{a), g*=p—-(08)
The color correction is performed by applying the transform
l a B

V=Tl ), of = 0L
Oy r Or
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whereo; ando,. indicates the standard deviations of the coordinates in the superscriptofireetion of the test
image on the reference is then obtained by re-converting thd @agwoordinates into RGB. As for BEST-FIT,
also for CT we remove from the computation of the mean and of the standaatioas the pixels with value
255.

Table 2 shows the mean accuracies (averaged on the test sets) obtaiteddatasets TESTS51, ALOI
and BARNARD by our approach, BEST-FIT and CT and when no caitvaacement is performed. The best
results are obtained by BEST-FITS, but the discrepancy between ¢heaates of BEST-FIT and our method
is very small, while the worst results are given by CT. Moreover, thankisg@olor description by normalized
histograms, our approach (as well as CT) recovers the von Kriefigerfs also in case of rescaled and/or
rotated images, while BEST-FIT is not invariant to these transforms. | tigseriments we séf = 256 and
M =100. The gap between the performances of CT and the other two methualticsilarly remarkable for
TESTS51, also when saturated pixels are removed from the mean andrstdesiiation computation. This is
because the mean value used in CT captures just a small part of the colanatibn.

Database | Mean Value ofd; Mean Value ofA Mean Value ofd Mean Value ofd

in BEST-FIT in CT [4] in OUR APPROACH
TESTS51 0.7809 3.70°7 0.9538 7.010~6
ALOI 0.9913 0.9961 0.9959 0.9961
BARNARD 0.9447 0.9803 0.9772 0.9805

Table 2: Comparison of the mean accuracy obtained without applying dornl@dancing and by using BEST-
FIT, the color transfer algorithm [4] and our approach.

45 Comparison with Color Constancy Algorithms

In this Section we compare our approach and BEST-FIT with the colot@oagmethods presented and tested
in [31] on the dataset BARNARD.

The color constancy approaches considered in [31] are listed in Tableey include two Gray-World methods
(GW andDB-GW), a version of the Retinex algorithi8CALE-BY-MAX), several variants of a gamut mapping
approachCRULE-MV, CRULE-AVE, ECRULE-AVE, ECRULE-ICA, ECRULE-MV, CIP-AVE, CIP-MV, CIP-ICA),
two neural network methodSP-NEURAL-NET, NEURAL-NET), and some color by correlation techniques (
by-C-MLM, C-by-C-MAP, C-by-C-MMSE, C-by-C-0). In AVE-ILLUM the illuminant of each image is assumed
to be the average of the all illuminants in the datab@$®THING indicates that no color balancing has been
applied. These algorithms have been applied on the dataset images to detbgiriiiiminants. Several
error measures are taken into account for computing the accuracy iliithaant estimate. Here we consider
two error measures, for which the results are available for all the colastaacy methods in [31]. The first
measure is thangular errorbetween an illuminarit,; = (po, p1,p2) of the ground-truth and its estimalfg =

(p§, PT, P3):

Lyt - Te

Ey(Zgt,Z.) = arccos ————.
e | Zge [l Ze |l

(17)

Here| - || indicates the Euclidean norm.

The second measure is thié distance between the chromaticitieg;, g,.) and(re, g.) of the illuminantsZ,
andZ, respectively. The chromaticity of an illuminaGtg, p1, p2) is the pair ¢ = po/(po + p1 + p2), g =
p1/(po + p1 + p2)). The chromaticity-based error on the illuminant estimate is defined as

El(IgtaIe) = \/(Tgt - Te)Q + (ggt - 96)2- (18)
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Table 3 reports for each color constancy approach and forea€h 1, the root mean square error computed as

1
[é > BT )] (29)
(Igtvze)
where( is the total number of illuminant paird , Z.) taken into account.

In BEST-FIT and in our approach, the illuminant of an image has been dechfny scaling the canonical
illuminant by the estimated von Kries coefficients. In our approach we ussfihist color quantization\ =
256 bins,M = 100 bins).

There is a remarkable discrepancy between the errors output by BHS3Rd by our approach and those
obtained by the color constancy algorithms in [31]. This is due to the diffenguits of the considered al-
gorithms. In fact, the color constancy methods in [31] take as input justahenical illuminant/{l. and an
image, and use them to estimate the illuminant of the imidfe Then they compute the von Kries transform
relating thelll. and the estimate dfll; and correct the input image as it would be captured under the reference
illuminant.

BEST-FIT and our approach require as input a reference image R©Tanonical illuminant) and a test im-
age, and calculate the von Kries transform relating the reference to th&hes they correct the test image by
rescaling its channels according to the estimated von Kries coefficiem, 1§ known, the illuminant of the
test image is estimated simply by scaling each components oby the correspondent von Kries coefficient.
Using a reference image instead of the canonical illuminant makes the estinthtevain Kries coefficients
more accurate and therefore provides a better image correction.

While the color constancy approaches in [31] are successfully appli€drimputer Graphics, for instance to
improve the quality of digital photos, they are often not adequate for imagjelgect recognition [30]. On the
contrary, in Section 5 we prove that the color enhancement based astnate of the illuminant variation
allows good performances in the illuminant invariant image recognition.

Algorithm E, E Algorithm Lo B
[degree] [degree]

C-by-C-01 10.9 0.072
NOTHING 17.9 0.125 y

C-by-C-MAP 9.9 0.063
AVE-ILLUM 12.9 0.094

C-by-C-MLM 9.9 0.062
GW 13.8 0.072

C-by-C-MMSE 9.9 0.061
DB-GW 11.7 0.053

CRULE-MV 5.6 0.043
SCALE-BY-MAX 8.9 0.053

CRULE-AVE 7.1 0.046
CIP-MV 23.4 0.149

ECRULE-MV 5.6 0.040
CIP-AVE 16.1 0.105

ECRULE-AVE 6.9 0.046
CIP-ICA 10.6 0.076

ECRULE-ICA 7.0 0.047
NEURAL-NET 9.5 0.060
SP-NEURAL-NET 9.1 0.061 BEST-FIT 19 0015

OUR-METHOD 21 0.019

Table 3: Database BARNARD: Comparison of the errors of our apprdaEST-FIT and of the color constancy

algorithms presented in [31]. The errors of the methods in [31] have iegrmted in this Table as well as they

are in [31] (see Table Il first column, and Table Il first column of [84n implementation of these approaches
is available ahttp://kobus.ca/research/code/colour _constancy/

5 Image Recognition

In this Section we show how the estimate of the von Kries transform can bfarsachieving the illuminant
invariant image recognition.
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We stated the recognition problem as follows: let D be a database of knovgedfaferencel and letF a

set of illuminant transformations, and lébe a dissimilarity measure between images. Given a new unknown
imagel (query), the recognition of from D consists in finding the imagl of D and a transfornT” in F such
thatd(T(Io), I) = minFEJ:,ITGD d(F(Ir), ]).

To find the reference (possibly relighted) most similar to an input quergosgpute the von Kries transforms
mapping each reference onto the query, and we associate a dissimilargytsaeach of these transforms.
The solution is the reference whose von Kries transform has the minimuimiésgy from the query. In
particular, we define the image dissimilarity as

2 M
V=33 |ai¥(z) — Wj(z)]. (20)

=0 =1

where¥; and ¥’ are the inversions of the cumulative histograms ofithechannel of the query and reference

respectively. We note thieth term in (20) is thel! distance between the functions¥; and¥’, (i =0, 1, 2).
The dissimilarity scor&’ between a query,. and a referencé depends on the transforii mappingl,. onto

I, and therefore it is not a distance in the mathematical sense. In fact deeafdtidependency on the von Kries

coefficients, it does not satisfy triangular inequality. Neverthelgss,aquery-sensitivelissimilarity measure,

in the sense that it depends on the query. A mathematical formulation of tisdicktgon and retrieval problem

in case of query-sensitive measures is illustrated in [2].

In the following, we say that a quetd. is correctly recognized if the reference imadeof D minimizing
(20) is a re-lighted version af.. The performance of our approach has been evaluated lrgtbgnition rate
defined as the ratio between the number of testimages correctly recogniddlae total number of test images.

In our experiments, we considered the reference and the test setSaSEE and ALOI defined in Section
3. When no color normalization is applied, the mean recognition rate is abdufd@. TESTS51, and about
0.76 for ALOI.

Figure 7 shows the recognition rates of TESTS51 for different valtidg avhile Figure 8 shows the recognition
rates for the different reference and test sets of ALOI wiven 256 (Right) and when no color enhancement is
used (Left). An analysis about the recognition robustness with repéuot color quantization for the dataset
ALOI is reported in Figure 9(Left), that shows for each referendelse mean recognition rate on all the test
sets considered.

In the case of ALOI datasets, we compared our recognition rates with timia@ged by using the color
normalization methods Gray-World and ACE. We normalized the referendejaery colors by Gray-World
and ACE and we matched the color enhanced images by the dissimilarity me2@uvath «; = 1.0 for each
1 =0, 1, 2. Figure 9(Right) shows, for each reference set, our réttiog rates averaged on all the test sets,
along with the recognition rates obtained by Gray World, ACE and withoutr @ibancement. Both in terms
of recognition rate and program run time, our approach and the Grald\Wased method show similar results,
while the use of ACE gives the worst performances. The smallest ré@mgrates output by our retrieval
method are obtained for the lamp voltagés, and V539, that produce a large number of saturated pixels,
determining a low accuracy on the determination of the von Kries coefficiadtasiconsequence a decrement
of the recognition performances. In fact, for these voltages the imagbtbeigs is higher than in the other
cases.

6 Conclusionsand Future Directions

In this paper we presented a new algorithm for computing the illuminant ch@osgibly occurring between two

images of a scene. Our approach approximates the illuminant variations witbrih€ries model and hence

assumes that the surfaces of the objects in the scene obey the Lamfledtamnee laws. The illuminant change
between two pictures is computed by minimizing a dissimilarity measure between tlegvjsiednversions of



M. Lecca and S. Messelodi. / Electronic Letters on Compugtoivand Image Analysis 8(2):1-17, 2009 13

09
08| e L]

0.7

recognition rate

06 | A

05

. . . . . . . .
0.5 0.75 1 125 15 1.75 2 225 25 275 3
illuminant change

Figure 7: TESTS51: Robustness of the recognition rate with respecfeoatif color histogram quantizations.
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Figure 8: ALOI: Recognition rate for the different test and referesetewhen (Left) no color enhancement is
applied; and (Right) by using our approach € 256, M = 100).
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zation and (Right) in comparison with Gray World and ACE, and without caddautcing.

the cumulative color histograms of the considered images.
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The main advantages of our estimate ayéinear complexity with respect to the number of image pixels and to
the color quantization, and consequent small run time for computing the vies &aefficients (less than 0.04
seconds on an image of size 15@®00 pixels on a standard CPU Pentium4, 2.8 Ghixpnly two parameters
to be set up/ and ), iii) robustness to pixel saturation, image rescaling and in-plane rotating.

The experiments illustrated in Section 4 showed a high accuracy on the cdimpuatiethe von Kries transform
and on the image color correction also by varying the color quantizatiommedeas/N and A/. We compared
our approach with a best-fit method and with the color constancy algorithswibled in [31]. Differently
from these color constancy techniques, given a single input image ppuoach and BEST-FIT are not able
to determine its illuminant. These simply compute the von Kries map relating two picaureégrovided the
illuminant of one picture is known, they estimate that of the other. Neverth@&ST-FIT and our approach
are more adequate for the illuminant invariant image recognition than the asistancy algorithms. Given a
set of reference images and an unknown input image, the problem is thémefference possibly relighted that
is the most similar to the query. In this work we show how this goal can be ah&mply by estimating the
von Kries coefficients relating the query to each reference and by asidgsimilarity measure the score (20).
The proposed recognition method avoids the color correction step, saygda the recognition approaches
based on the color constancy methods, and guarantees higher peirdesniloreover, differently from BEST-
FIT, our method allows the recognition of rescaled and/or rotated images.

The retrieval results reported in Section 5 aim at showing how our algorithmpares to others when only
color information is used, but we are aware that a color analysis caensuifficient for image recognition in
the majority of the real world applications. In general other features, litete and edges, are to be employed
in addition to colors. In this framework, our technique can be integrated in a nwnplete object and image
recognition system to provide information about possible changes of lightcaenhance the image colors. In
particular, we plan to integrate our technique in the object and image reesdiEMORI [33], in order to
make it invariant to changes of light. Moreover, we would like to investigassibte extensions of our approach
to non Lambertian surfaces and to the case of non uniform illumination. Geesidhat the von Kries model
cannot be applied on images taken with different devices, we are intgtesdevelop new strategies or models
in order to make our estimatievice-invariant
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Voltage of \oltage of the Tests
the References 110 120 130 140 150 160 170 180 190 210 230 250
110 * 0.973+ 0.020 1.116+ 0.047 0.936+ 0.030 | 0.902+ 0.038 0.897+ 0.040 | 0.871+ 0.045 | 0.862+ 0.047 0.834+ 0.051 0.890+ 0.045 | 0.820+ 0.055 0.820+ 0.055
120 1.011+ 0.013 * 1.129+ 0.049 0.9474 0.025 0.912+ 0.033 0.907+ 0.035 0.881+4 0.040 0.872+ 0.042 0.843+ 0.047 0.900+ 0.041 0.829+ 0.050 0.829+ 0.050
130 1.028+ 0.021 1.0164+ 0.013 * 0.962+ 0.019 | 0.927+ 0.028 0.9224+ 0.030 | 0.896+ 0.036 | 0.886+ 0.038 0.857+ 0.044 | 0.915+ 0.036 | 0.843+ 0.047 0.8434 0.047
140 0.898+ 0.037 | 0.887+ 0.038 0.873+ 0.040 * 0.807+ 0.053 0.803+ 0.054 | 0.779+ 0.058 | 0.770+ 0.059 0.744+ 0.062 0.796+ 0.057 | 0.731+ 0.063 0.731+ 0.063
150 1.070+ 0.035 1.0574+ 0.028 1.040+ 0.021 1.197+ 0.067 * 0.959+ 0.019 0.931+ 0.026 0.921+ 0.029 0.891+ 0.034 0.951+ 0.026 0.877+ 0.038 0.8774 0.038
160 1.1114 0.047 1.0984+ 0.040 1.079+ 0.033 1.2444 0.082 1.0384+ 0.016 * 0.966+ 0.018 | 0.956+ 0.021 0.925+ 0.027 0.987+ 0.021 | 0.910+ 0.031 0.9104+ 0.031
170 1.1174 0.050 1.104+ 0.043 1.086-+ 0.036 1.2524 0.085 1.044+ 0.021 1.006+ 0.011 * 0.961+ 0.018 0.930+ 0.024 | 0.992+ 0.020 | 0.915+ 0.029 0.9154 0.029
180 1.151+ 0.060 1.1374+ 0.053 1.118+ 0.046 1.291+ 0.097 1.075+ 0.030 1.035+ 0.019 1.030+ 0.014 * 0.957+ 0.018 1.021+ 0.019 | 0.942+ 0.024 0.942+ 0.024
190 1.164+ 0.064 1.1504+ 0.057 1.131+ 0.049 1.306+ 0.101 1.086+ 0.034 1.047+ 0.023 1.041+ 0.019 1.011+ 0.011 * 1.032+ 0.019 0.952+ 0.021 0.952+ 0.021
210 1.2044+ 0.075 1.1904+ 0.068 1.170-+ 0.060 1.353+ 0.113 1.1244 0.044 1.082+ 0.032 1.076+ 0.029 1.0454+ 0.020 1.034+ 0.014 * 0.984+ 0.016 0.984+ 0.016
230 1.1274 0.059 1.1144 0.051 1.095+ 0.044 1.2634 0.092 1.0524+ 0.030 1.014+ 0.022 1.0094 0.020 | 0.980+ 0.018 0.969+ 0.017 0.938+ 0.019 * 0.922+ 0.021
250 1.225+ 0.083 1.2104+ 0.075 1.190+ 0.067 1.378+ 0.119 1.1434+ 0.050 1.100+ 0.038 1.094+ 0.035 1.063+ 0.027 1.051+ 0.024 1.017+ 0.016 1.085+ 0.024 *
(b) a1 £ Aoy
Voltage of \oltage of the Tests
the References 110 120 130 140 150 160 170 180 190 210 230 250
110 * 1.025+ 0.026 1.238+ 0.071 1.0254 0.034 1.002+ 0.036 1.014+ 0.038 0.999+ 0.040 1.003+ 0.041 0.995+ 0.043 1.0764 0.052 | 0.989+ 0.047 0.989+ 0.047
120 0.982+ 0.017 * 1.216+ 0.062 1.006+ 0.027 0.984+ 0.029 0.996+ 0.032 0.981+ 0.034 0.985+ 0.035 0.9774+ 0.037 1.057+ 0.044 0.972+ 0.040 0.972+ 0.040
130 0.976+ 0.024 0.993+ 0.016 * 0.999+ 0.020 0.978+ 0.024 0.989+ 0.026 0.9744 0.029 0.978+ 0.030 0.971+ 0.032 1.050+ 0.038 0.965+ 0.035 0.965+ 0.035
140 0.810+ 0.046 | 0.825+ 0.043 0.830+ 0.040 * 0.812+ 0.043 0.821+4 0.043 0.809+ 0.046 | 0.812+ 0.046 0.806+ 0.047 0.871+ 0.040 | 0.801+ 0.049 0.801+ 0.049
150 0.977+ 0.032 | 0.994+ 0.026 1.001+ 0.020 1.208+ 0.056 * 0.990+ 0.019 0.975+ 0.023 | 0.979+ 0.024 0.971+ 0.026 1.050+ 0.031 | 0.965+ 0.029 0.965+ 0.029
160 0.999+ 0.036 1.0174+ 0.030 1.024+ 0.025 1.236+ 0.065 1.023+ 0.014 * 0.9974 0.019 1.001+ 0.021 0.993+ 0.023 1.074+ 0.032 0.987+ 0.027 0.987+ 0.027
170 0.987+ 0.037 1.0054+ 0.032 1.012+ 0.027 1.221+ 0.063 1.0114+ 0.020 0.988+ 0.013 * 0.989+ 0.018 0.981+ 0.021 1.061+ 0.029 | 0.976+ 0.025 0.976+ 0.025
180 1.0034+ 0.040 1.020+ 0.035 1.027+ 0.031 1.2404+ 0.069 1.026+ 0.024 1.004+ 0.019 1.0154+ 0.014 * 0.996+ 0.018 1.0774 0.030 | 0.990+ 0.023 0.990+ 0.023
190 0.999+ 0.041 1.017+ 0.036 1.023+ 0.032 1.235+ 0.069 1.023+ 0.025 1.000+ 0.021 1.012+ 0.018 0.996+ 0.012 * 1.073+ 0.027 0.987+ 0.022 0.987+ 0.022
210 1.007+ 0.043 1.025+ 0.038 1.031+ 0.034 1.245+ 0.072 1.031+ 0.028 1.008+ 0.024 1.020+ 0.022 1.0044+ 0.019 1.008-+ 0.013 * 0.994+ 0.018 0.994+ 0.018
230 0.931+ 0.045 | 0.948+ 0.039 0.9544 0.034 1.1504+ 0.053 | 0.953+ 0.028 0.9324 0.028 0.943+ 0.025 | 0.929+ 0.025 0.9324 0.023 0.925+ 0.020 * 0.9204+ 0.020
250 1.013+ 0.049 1.031+ 0.043 1.038+ 0.039 1.253+ 0.076 1.0374+ 0.032 1.014+ 0.028 1.026+ 0.026 1.010+ 0.024 1.014+ 0.023 1.006+ 0.018 1.088+ 0.023 *
(€) as = Ay
Voltage of \oltage of the Tests
the References 110 120 130 140 150 160 170 180 190 210 230 250
110 * 1.082+ 0.047 1.408-+ 0.088 1.1314+ 0.073 1.123+ 0.081 1.162+ 0.091 1.1634+ 0.097 1.189+ 0.105 1.217+ 0.116 1.3554 0.137 1.226+ 0.123 1.226+ 0.123
120 0.954+ 0.027 * 1.342+ 0.065 1.077+ 0.050 1.070+ 0.059 1.107+ 0.068 1.107+ 0.074 1.1324+ 0.080 1.159+ 0.091 1.291+ 0.109 1.1674+ 0.097 1.167+ 0.097
130 0.926+ 0.040 0.970+ 0.023 * 1.044+ 0.035 1.0374+ 0.044 1.073+ 0.053 1.073+ 0.059 1.097+ 0.065 1.122+ 0.075 1.250+ 0.091 1.1304+ 0.081 1.130+ 0.081
140 0.7134+ 0.045 | 0.747+ 0.037 0.770+ 0.031 * 0.798+ 0.038 0.826+ 0.042 0.826+ 0.046 | 0.844-+ 0.049 0.864+ 0.054 | 0.961+ 0.057 | 0.870+ 0.058 0.870+ 0.058
150 0.888+ 0.058 | 0.930+ 0.043 0.9594 0.032 1.2464 0.048 * 1.027+ 0.031 1.0274 0.037 1.050+ 0.043 1.075+ 0.051 1.196+ 0.064 1.0824+ 0.057 1.082+ 0.057
160 0.895+ 0.066 | 0.937+ 0.052 0.966+ 0.041 1.255+ 0.058 1.007+ 0.020 * 1.034+ 0.029 1.057+ 0.035 1.082+ 0.044 1.204+ 0.058 1.089+ 0.049 1.089+ 0.049
170 0.866+ 0.070 0.907+ 0.057 0.935+ 0.046 1.214+ 0.060 0.974+ 0.029 0.967+ 0.018 * 1.0224+ 0.027 1.046+ 0.035 1.164+ 0.049 1.0534+ 0.041 1.053+ 0.041
180 0.866+ 0.075 | 0.907+ 0.062 0.9354 0.052 1.2154 0.067 | 0.975+ 0.036 0.968+ 0.027 1.000+ 0.019 * 1.046+ 0.030 1.1644 0.045 1.053+ 0.038 1.053+ 0.038
190 0.848+ 0.078 | 0.888+ 0.065 0.915+ 0.056 1.188+ 0.069 | 0.954+ 0.039 0.9474 0.032 0.979+ 0.026 | 0.979+ 0.017 * 1.139+ 0.038 1.030+ 0.032 1.030+ 0.032
210 0.830+ 0.083 0.868+ 0.071 0.895+ 0.061 1.162+ 0.074 0.933+ 0.045 0.926+ 0.037 0.9574 0.033 0.957+ 0.027 0.978+ 0.019 * 1.0074+ 0.025 1.007+ 0.025
230 0.746+ 0.078 | 0.781+ 0.068 0.804+ 0.060 1.0444+ 0.064 | 0.838+ 0.045 0.832+ 0.040 | 0.860+ 0.036 | 0.860+ 0.033 0.879+ 0.029 0.899+ 0.022 * 0.905+ 0.019
250 0.825+ 0.087 | 0.863+ 0.075 0.889+ 0.066 1.1554 0.079 | 0.927+ 0.049 0.9204 0.042 0.951+ 0.038 | 0.951+ 0.034 0.972+ 0.030 | 0.994+ 0.024 1.106+ 0.023 *
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Table 4: ALOI: Estimates ofy, a1, ag With error andN = 256. The entry:;j of each Table is the mean value of the coefficients of the von Kries ma@
between the testimages illuminated with voltageand the reference taken with voltalg andAc; is the standard deviation of the von Kries coefficient 3

estimates.
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