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Abstract

We present a linear algorithm for the computation of the illuminant change occurring between two color
pictures of a scene. We model the light variations with the von Kries diagonal transform and we estimate it
by minimizing a dissimilarity measure between the piecewise inversions of the cumulative color histograms
of the considered images. We also propose a method for illuminant invariant image recognition based on
our von Kries transform estimate.

Key Words: Color Image Analysis, Color Histograms, Illuminant Changes, von Kries Model, Image Re-
trieval.

1 Color across Light

The color of an image recorded by a camera depends on the spectral power of the light illuminating the scene,
on the geometrical and physical conditions of the scene and on the characteristics of the device used for the
acquisition. Therefore, the same scene viewed under two different illuminants produces two different color im-
ages. For instance, a white object appears white in the daily light, but red when illuminated by a red light. In the
human vision system, the illuminant invariance is achieved by thecolor constancyprocess. This is a chromatic
adaptation mechanism, that detects and removes possible chromatic dominants and illuminant incidents from
the observed scene, so that the same scene under different illuminants is perceived as the same entity [20].
Color is one of the most widely used features in many computer vision fields, likeimage retrieval and index-
ing [27], image segmentation [25] and object tracking [10], but its instability with respect to changes of light
adversely affects the performances of the algorithms based on its analysis. To overcome this problem, many
methods for discounting the illuminant color sensitivity from an image have beendeveloped. For instance,
the color enhancement algorithms, as the well known Gray-World algorithm, the comprehensive color normal-
ization [16], the Retinex theory [22], [14], and the automatic color enhancement (ACE) [8], discard the color
illuminant dependency by processing the image in the color space and transforming its color. In other meth-
ods, like the gamut mapping approaches [3], the color-by-correlation techniques [5], and the machine learning
strategies as [6], [9], [1], the color constancy is achieved by computingthe transformation relating the illu-
minant of the input image and a reference canonical illuminant. The input image istherefore remapped as it
was taken under the known canonical illuminant. Color constancy can be obtained also without modifying or
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remapping on to a standard reference the input image, but simply by describing it by a set of illuminant invariant
features, like the color invariant histograms proposed in [7], [15] and [17] or the edge-based features employed
in [23] and [19]. However, the algorithmic simulation of the human color constancy mechanism is a hard prob-
lem: generally, the algorithms make strong assumptions circumscribing their usage, like hypotheses about the
uniformity of the illuminant, the characteristics of the device used for recording the scene, the number and the
position of the light sources, the reflectance properties of the materials in thescene. Moreover, many methods,
as for instance ACE, use thresholds to be fixed empirically, while the machine learning techniques need for the
choice of a training set and of a training phase, that is often computationally expensive. A comparison of the
most used computational color constancy algorithms is presented in [29] and[31].
In this work, we propose a novel algorithm for estimating the illuminant changeoccurring between an image of
a scene and a re-lighted version of it, so that color constancy is achievedby remapping the re-lighted image on
its canonical reference. We assume that the illuminant variation is homogeneous over the whole image and we
approximate it by the von Kries transform [18]. These hypotheses are assumed by a lot of color constancy algo-
rithms. We represent the colors of each image by the histograms of the three channels red, green, blue, and we
define apiecewise inversionof the cumulative channels histograms. We compute the von Kries light variation
by minimizing a measure of dissimilarity between the piecewise inversions of the cumulative color histograms
of the images considered. The color representation by histograms makes themethod robust to image rescaling
and in-plane rotating. Our approach is very efficient from the computational point of view, also in comparison
with other techniques discussed in the Sections 4.4 and 4.5: no user interaction is requested, except for setting
up two integer numbersN andM regarding the color quantization and the algorithm complexity is linear with
respect to the number of image pixels and to the sumN +M . Moreover, differently from many color constancy
algorithms requiring the usage of a particular color space like [5], [3], [4], our algorithm works directly in the
RGB color space.
We also illustrate how our estimate can be used for the illuminant invariant image recognition. The problem is
stated as follows: given a set of known images, saidreferences, and an unseen image, termedquery, we want
to find the reference that, if re-lighted, is the most similar to the query. To solvethis problem, we firstly com-
pute the von Kries transform possibly relating the query and each reference, and then we select the referenceI
whose relighted version is the most similar to the query. The similarity we use hereis defined in the space of
the piecewise inversion of the cumulative color histograms of the query and of the references.
The tests carried out on synthetic and real-world datasets showed good performances both for our illuminant
estimate and for its application to image recognition. The paper is organized as follows: Section 2 illustrates
the von Kries diagonal model, Section 3 explains our technique for estimating the illuminant changes; Section
4 describes the experiments measuring the accuracy on the von Kries transform estimate; Section 5 presents an
illuminant invariant image recognition strategy based on our estimate of illuminant variations; finally Section 6
outlines our conclusions and future work.

2 The von Kries Diagonal Model

The response of a camera to the light reflected from a point in a scene is coded in a triplet(p0, p1, p2), with for
eachi = 0, 1, 2

pi =

∫

Ω
E(λ)S(λ)Fi(λ) dλ. (1)

In this formula,λ is the wavelength of the light illuminating the scene,E its spectral power distribution,S the
bidirectional reflectance distribution function (BRDF) of the illuminated surface to which the point belongs,
andFi is the spectral sensitivity function of the sensor. The integral ranges over the visible spectrum, i.e.Ω =
[380, 780] nm.
The BRDF depends on the directions on the incoming and of the reflected light. For a wide range of matte
surfaces, which appear equally bright from all viewing directions, the BRDF is well approximated by the
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Lambertian photometric reflection model [12]. Moreover, as proved in [24], under this assumption, the surface
reflectance can be expressed by a linear combination of three basis functionsSk(λ) with weightsσk, k = 0, 1,
2, so that equation (1) can be re-written as follows:

pT = WσT (2)

wherep = (p0, p1, p2), σ = (σ0, σ1, σ2), andW is the 3×3 matrix with entryWki =
∫

Ω E(λ)Sk(λ)Fi(λ)dλ, (k,
i = 0, 1, 2).
The responsep′ = (p′0, p

′
1, p

′
2) captured under an illuminant with spectral powerE′ is then given byp′T =

W ′σT . Therefore, since the spectral reflectance of the surface in the scene does not depend on the illumination,
the responsesp andp′ are related by the linear transform

pT = W [W ′]−1p′T . (3)

Note that Equation (3) makes sense only when the matrixW ′ is not singular, i.e. when the functionsE′, Sk

andF k (k = 0, 1, 2) differ from the null function. Since we assume that the surfacereflectance and the camera
responses are not identically zero, the inverse ofW ′ exists whenE′ 6= 0 for all wavelengths.
The von Kries diagonal model we use in this work, approximates the spectral sensitivity of the camera sensor
by the delta function, i.e. it assumes that each sensor responds only to a single wavelength of light:Fi(λ) =
δ(λ − λi), for eachi = 0, 1, 2. Under this assumption, Equation (3) becomes

(p0, p1, p2) =
( E(λ0)

E′(λ0)
p′0,

E(λ1)

E′(λ1)
p′1,

E(λ2)

E′(λ2)
p′2

)

(4)

i.e. the von Kries diagonal model approximates the change of illuminant mappingp ontop′ by a simple linear
transformation that rescales each channel independently.
In the following, for eachi = 0, 1, 2,we setαi := E(λi)[E

′(λi)]
−1 and we refer to the parametersα0, α1 and

α2 as thevon Kries coefficients.
The diagonal model has been proved to be a good approximation for the illuminant changes [18], especially
in the case of narrow-band sensory systems, and it is assumed by many color constancy algorithms, like the
Gray-World and the gamut mapping based approaches.

3 Computing von Kries Transform

In our method, the color of an image is described by the tripletH := (H0, H1, H2) of the distributions of the
sensory responsesp0 (red),p1 (green),p2 (blue). The values ofpi range on [0, 255], fori = 0, 1, 2. We refer to
H ascolor distribution, whereas we call its componentschannel distributions. We consider now a continuous
treatment, that allows to handle straightforward the concepts of piecewise function inversion. Hereafter we
assume that

∫ 255

0
Hi(x) dx = 1, ∀ i = 0, 1, 2. (5)

Let H be a channel distribution. We define the cumulative channel distribution ofH as the function

Φ : [0, 255] → [0, 1] such that Φ(x) =

∫ x

0
H(y), (6)

wherex ranges over [0, 255]. FunctionΦ is monotonically increasing, continuous and generally not injective.
In fact if H is zero on an intervalJ ⊂ [0, 255], then therestriction ∗ of Φ on J is constant and equal to
Φ(min(J)). In this case, there exists a partitiont0 < t1 < t2 < . . . < tn of [0, 255] witht0 = 0, tn = 255, such

∗The restriction of a functionf : X → Y to a subsetS of X is the functionf|S from S to Y such thatf|S(s) = f(s) for all s in S.
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thatΦ is strictly monotonically increasing (resp. constant) on theith interval and constant (resp. strictly mono-
tonically increasing) on the(i+1)th interval andi = 0, . . . ,n−1. We note that[0, 1] =∪j=0,...,n−1Φ([tj , tj+1)),
i.e. the set{Φ([tj , tj+1)}j=0,...,n−1 is a partition of [0, 1].

Without loss of generality, we can suppose thatΦ is strictly monotonically increasing on theith interval and
constant on the(i + 1)th interval. We define the following function:

Ψ : [0, 1] → [0, 255] (7)

such that the restriction ofΨ to each intervalΦ([tj , tj+1)) is the restriction ofΦ−1 on [Φ(tj), Φ(tj+1)), i.e. for
eachj,

Ψ(y) = Φ−1(y), ∀ y ∈ Φ([tj , tj+1)). (8)

FunctionΨ is thepiecewiseinversion of the cumulative channel distributionH. It is piecewise continuous and
since it is the inverse of a monotonically increasing function, it is monotonically increasing on each interval
[Φ(tj), Φ(tj+1)). This implies that it is integrable too.
If Φ is bijective, we simply consider the trivial partition [t0, t1] = [0, 255] and we takeΨ = Φ−1. Let H and
H ′ be the distributions of a channel of two imagesI andI ′ respectively. If the two images represent the same
scene under two different illuminant, i.e. if there existsα in (0, +∞) such thatH( 1

α
x) = H ′(x) for eachx in [0,

255], we have thatΦ′(x) = Φ(αx) andΨ′(y) = 1
α
Ψ(y), for all y ∈ [0, 1]. We estimate the von Kries coefficient

α by minimizing theL2 distance between the functionsΨ andαΨ′:

δ =

∫ 1

0
(Ψ(y) − αΨ′(y))2 dy. (9)

In our implementation, the channel distributions are represented by histograms ofN bins, whereN ranges in
{1, . . . , 256}. Thus Equation (3) becomes

∑N
x=1 Hi(x) = 1, for eachi = 0, 1, 2. The piecewise inversions of the

cumulative distributions are quantized on a grid ofM nodes equi-spaced on the interval [0, 1], so that formula
(9) becomes

δ =
M−1
∑

y=1

[

Ψ
( y

M

)

− αΨ′
( y

M

)]2
. (10)

The von Kries coefficientα is hence given by

α =

∑M−1
y=1 Ψ′

(

y
M

)2

∑M−1
y=1 Ψ

(

y
M

)

Ψ′

(

y
M

) . (11)

Note that theM th bin is excluded from the computation ofδ. In fact, since the values ofp0, p1, p2 range in [0,
255], the values ofα0R0, α1G0, α2B0 that are greater than 255 are cast to 255 (saturated pixels). Therefore, to
make the estimate of the von Kries coefficients robust (as much as possible) with respect to the pixel saturation,
theM th value of the functionsΨ andΨ′ are not considered. However, it is clear that the performances decrease
by incrementing the number of saturated pixels (see the experiments).

The algorithm for estimating the von Kries coefficients takes as input two imagesI andI ′ and the parameters
N andM for the color quantization. It consists of three steps: (i) firstly it computes the color histograms of
I andI ′, then (ii ) the cumulative histograms and their piecewise inversions, and finally (iii ) estimates by the
equation (11) the von Kries coefficients. The algorithmic complexity of all the steps is linear. More precisely,
for step (i), the complexity isO(NI + NI′), whereNI andN ′

I are the number of pixels of the imagesI andI ′

respectively; for step (ii ) it is O(N + M), and for step (iii ) it is O(M). The total complexity of the proposed
approach is therefore linear with respect to the numbers of image pixels andto the quantization parametersN
andM .
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4 Performance Evaluation

The accuracy on the estimate of the von Kries diagonal transform has been tested on different synthetic and
real-world databases. In 4.1, 4.2, 4.3 we report the results obtained on the synthetic database TESTS51 [26]
and on the real-world datasets ALOI [21] and BARNARD [28]. In the Subsections 4.4 and 4.5, we present a
comparative analysis of our approach with other methods (BEST-FIT, thecolor transfer technique [4] and the
color constancy methods in [31]).
Each database consists of a set of images taken under a reference illuminant (reference images) and a set of
re-lighted versions of them (test images). For all the three databases, we measure the accuracy on the estimate
of the von Kries transformK relating each test imageI to the correspondent reference imageI0 as follows:

A = 1 − L1(I, Kest(I0)), (12)

whereL1(I, Kest(I0)) is theL1 distance computed on the RGB space betweenI and the transformKest(I0)
of I0, andKest indicates the von Kries transform we estimate. This distance has been normalized to range in
[0,1]. Therefore, the closer to 1A is, the better the estimate of the von Kries transform is. To quantify the
benefit of our estimate, we compared the accuracy (12) with the value

A0 = 1 − L1(I, I0), (13)

that measures the similarity of the reference to the test image when no color enhancement is applied.
The test images of TESTS51 have been generated synthetically by rescaling the RGB channels of 51 natural

pictures by a set of 11 real numbers{βw} ranging in [0.5, 3.0] (see Subsection 4.1). Therefore, in addition to
the values of (12) and (13), for TESTS51 we measure the precision on the estimate of the von Kries coefficients
by computing the error

εw = 1 −
βest

w

βw

∀ w = 0, . . . , 10, (14)

whereβest
w is our estimate ofβw. The closerεw to zero is, the better the accuracy on the determination of the

von Kries transform is. A strictly negative (positive, resp.) value ofεw indicates that the estimate is greater
(smaller, resp.) than the real coefficient.

For the comparison in Subsection 4.4 we used the mean accuracies (12), while for the comparison in Sub-
section 4.5, we use two error measures defined in [31] and detailed next.

We measured the sensitivity of our estimates with respect to the color quantization by the mean values of
(12) and (14) (averaged on the number of test images) by varying the values ofN andM . More precisely,
we consideredN = 256, 128, 64, 32, 16 bins andM = 10, 30, 50, 100 bins. We observed that the accuracy
(12) and the error (14) critically depend onN , while changingM does not affect significantly the estimation
performances. Therefore, here we discuss the robustness of our method with respect to both the parametersN
andM only for the synthetic dataset TESTS51, while in the experiments on ALOI andBARNARD we fixed
M = 100 and we varyN .

4.1 TESTS51

The dataset TESTS51 is freely available athttp://www-cvr.ai.uiuc.edu/ponce grp/data/ . It
consists of a set of images of 8 different objects and of a set of 51 test-pictures in which the objects appear
under different conditions (occluded, rescaled, rotated, differentlyilluminated, . . . ).
In this work, we took the 51 test pictures as references and we generated synthetically the test images by
changing the color appearance of each reference by the von Kries transforms

Fβw
(p0, p1, p2) = βw(p0, p1, p2), (15)
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(a) (b)

Figure 1: TESTS51 Database: the Ponce’s pictures on left in (a) and (b) have been transformed by rescaling
their color channels by (a) 0.6 and (b) 1.8. Their re-lighted versions areshown on right.

with βw = 0.5 + 0.25w, andw = 0, . . . , 10. Some examples are shown in Figure 1.
Figure 2 shows the mean errors (14) and the mean accuracies (12) versus the color quantization, forN =

256, 32, 16 andM = 10, 30, 50, 100. In this figure, we omit to show the results obtained forN = 128 andN =
64 because they are very similar to those obtained forN = 256. We note that apart from the caseM = 10, for
N = 256, the error is negative forβw < 1, positive otherwise. On the contrary, forM 6= 10 andN = 64, 32,
16, the error is positive forβ < 1, negative otherwise. This behavior is due to the color quantization and to the
algorithm used for minimizing (9). Clearly, forβw = 1.0,Fβw

is the identity function and so the accuracy is 1.0
and the error is 0.0 for every quantization.
Figure 3 shows the mean accuracy (13) and the values of (12) for different color quantizations. By increasing
βw, the number of saturated pixels increases too, and consequently the accuracy on our estimate decreases.
This is more noticeable forβw ≥ 1.75, i.e. when the brightness of the test images is 1.75 times that of the
correspondent references. The best results are obtained forN = 256, andM = 100: for this color quantization,
the accuracy (12) between the test images and the color-remapped references are on average 10 times smaller
than the value (13) between the tests and the references. No remarkable differences are obtained by usingM =
30,M = 50 orM = 100, while forM = 10 the performances are not satisfactory.

4.2 ALOI

The database ALOI is a collection of 110,250 images of 1,000 objects recorded under different circumstances.
It is freely available athttp://staff.science.uva.nl/˜aloi/ . Each frontal object view has been
taken under 12 different light conditions, produced by varying the color temperature of five lamps illuminating
the scene. More precisely, the lamp voltage was controlled to beVj = j × 0.047 Volts withj ∈ J = {110, 120,
130, 140, 150, 160, 170, 180, 190, 210, 230, 250}. An example of an object view under the 12 different lights
is shown in Figure 4.
For each pair of illuminants(Vj , Vk) with j 6= k, we took the images captured with lamp voltageVj as ref-
erences and those captured with voltageVk as tests. Therefore, we considered 132 pairs of reference and test
sets.

For ALOI we do not know the actual values of the von Kries coefficients that approximate the considered
changes of light. Therefore, we cannot measure the accuracy of ourestimates ofαi by the formula (14). For
shortness, we report only the values obtained withN = 256 bins in the Table (4) at the end of this paper. A
more detailed analysis about the result dependency onN can be found in the Technical Report [32].

Figure 5 shows for all the sets of references and tests the mean accuracy (13) and the values of (12) whenN
= 256. As reported in [32], the mean accuracies do not change remarkably whenN = 128 orN = 64, and the
worst results are obtained forN = 16.

4.3 BARNARD

In this Section we report the experiments carried out on the real-world imagedataset [28] downloadable from
http://www.cs.sfu.ca/˜colour/ .
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Figure 2: TESTS51: Errors (see formula (14)) on estimates of von Kriescoefficients for different color quanti-
zation.
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Figure 4: ALOI: An example of a frontal view of an object of ALOI database taken under 12 different illumi-
nants.
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Figure 5: ALOI: Values of the mean accuracy (13) (on left) and (12) (on right). HereN = 256,M = 100. To
make the plots more readable, we show a linear interpolation of the accuracy surface by colors.

This database - that we refer as BARNARD - is composed by 321 pictures grouped in 30 categories. Each cat-
egory contains a reference image taken under an incandescent light Sylvania 50MR16Q (canonical illuminant)
and a number (from 2 to 11) of relighted versions of it (test images) underdifferent lights. The illuminant is
specified image by image by a triplet(p0, p1, p2).

We computed the accuracy of our estimates by the formulas (12) and (13). The results are shown in Figure
6 for different values ofN , while M = 100, while Table 1 shows the estimated coefficients of the von Kries
transform mapping the test images on to the references forN = 256, andM = 100.

4.4 Comparison with BEST-FIT and with a Color Transfer Method

When the test and the reference images are related just by an uniform change of light, and no rescaling and
changes of in-plane orientation occur, the von Kries transform approximating the illuminant variation can be
estimated by abest fitmethod (BEST-FIT for short), that we explain here.
Let pi

r andpi
t be the sensory responses at theith pixel of the reference and test images respectively, and let

(pi
r)j and(pi

t)j indicate theirjth component (j = 0, 1, 2). By the von Kries model,(pi
r)j = αj(pi

t)j , where
αj is thejth von Kries coefficient.
For eachj, BEST-FIT estimates the value ofαj by the least square method that minimizes the energy functional

∑

i=1,...,NI

[(pi
r)j − αj(pi

t)j ]
2. (16)

HereNI denotes the number of pixels in the reference (or test) image.
In order to make the estimates of the von Kries coefficient robust to the saturated pixels, from the summation
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solux-4100 0.626± 0.116 0.821± 0.173 1.148± 0.261
solux-4100+3202 0.271± 0.088 0.496± 0.172 1.242± 0.486
solux-3500 0.936± 0.187 1.092± 0.223 1.219± 0.261
solux-3500+3202 0.379± 0.136 0.634± 0.239 1.281± 0.539
ph-ulm 0.869± 0.221 1.009± 0.292 0.806± 0.222
solux-4700+3202 0.218± 0.096 0.433± 0.200 1.200± 0.636

Table 1: Database BARNARD: estimated von Kries coefficients forN = 256 andM = 100.

in (16) we exclude the pairs((pi
r)j , (pi

t)j) in which at least one element is 255.
Differently from BEST-FIT, the color transfer method presented in [4] isinvariant to changes of size and in-
plane orientation of the images. Like our method, color transfer employs statistical information about the
color distribution of the images. Color transfer borrows the colors of an image onto an other. This approach
is not tailored for the illuminant problem, but it is a general method largely usedin Computer Graphics for
correcting the color of an image with respect to a reference. The algorithmproposed in [4] (here denoted by
CT) performs color transfer by means of a simple statistical analysis on the decorrelated orthogonal color space
lαβ [11]. Firstly the RGB responses of the reference imager and of the test imaget are converted by a non-
linear transform in thelαβ space. For both the images, the mean values (indicated by the brackets〈 〉) and the
standard deviations of the channelsl, α, β are computed. The mean values are then subtracted from the sensor
responses expressed in thelαβ coordinates:

l∗ = l − 〈l〉, α∗ = α − 〈α〉, β∗ = β − 〈β〉

The color correction is performed by applying the transform

l′ =
σl

t

σl
r

l∗ + 〈l〉, α′ =
σα

t

σα
r

α∗ + 〈α〉, β′ =
σβ

t

σβ
r

β∗ + 〈β〉
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whereσt andσr indicates the standard deviations of the coordinates in the superscript. Thecorrection of the test
image on the reference is then obtained by re-converting the newlαβ coordinates into RGB. As for BEST-FIT,
also for CT we remove from the computation of the mean and of the standard variations the pixels with value
255.

Table 2 shows the mean accuracies (averaged on the test sets) obtained on the datasets TESTS51, ALOI
and BARNARD by our approach, BEST-FIT and CT and when no color enhancement is performed. The best
results are obtained by BEST-FITS, but the discrepancy between the accuracies of BEST-FIT and our method
is very small, while the worst results are given by CT. Moreover, thanks tothe color description by normalized
histograms, our approach (as well as CT) recovers the von Kries coefficients also in case of rescaled and/or
rotated images, while BEST-FIT is not invariant to these transforms. In these experiments we setN = 256 and
M = 100. The gap between the performances of CT and the other two methods isparticularly remarkable for
TESTS51, also when saturated pixels are removed from the mean and standard deviation computation. This is
because the mean value used in CT captures just a small part of the color information.

Database Mean Value ofA0 Mean Value ofA Mean Value ofA Mean Value ofA
in BEST-FIT in CT [4] in OUR APPROACH

TESTS51 0.7809 3.710−7 0.9538 7.010−6

ALOI 0.9913 0.9961 0.9959 0.9961
BARNARD 0.9447 0.9803 0.9772 0.9805

Table 2: Comparison of the mean accuracy obtained without applying any color balancing and by using BEST-
FIT, the color transfer algorithm [4] and our approach.

4.5 Comparison with Color Constancy Algorithms

In this Section we compare our approach and BEST-FIT with the color constancy methods presented and tested
in [31] on the dataset BARNARD.
The color constancy approaches considered in [31] are listed in Table 3. They include two Gray-World methods
(GW andDB-GW), a version of the Retinex algorithm (SCALE-BY-MAX), several variants of a gamut mapping
approach (CRULE-MV, CRULE-AVE, ECRULE-AVE, ECRULE-ICA, ECRULE-MV, CIP-AVE, CIP-MV, CIP-ICA),
two neural network methods (SP-NEURAL-NET, NEURAL-NET), and some color by correlation techniques (C-
by-C-MLM, C-by-C-MAP, C-by-C-MMSE, C-by-C-01). In AVE-ILLUM the illuminant of each image is assumed
to be the average of the all illuminants in the database.NOTHING indicates that no color balancing has been
applied. These algorithms have been applied on the dataset images to determinetheir illuminants. Several
error measures are taken into account for computing the accuracy of theilluminant estimate. Here we consider
two error measures, for which the results are available for all the color constancy methods in [31]. The first
measure is theangular errorbetween an illuminantIgt = (p0, p1, p2) of the ground-truth and its estimateIe =
(pe

0, p
e
1, p

e
2):

E0(Igt, Ie) = arccos
Igt · Ie

‖ Igt ‖‖ Ie ‖
. (17)

Here‖ · ‖ indicates the Euclidean norm.
The second measure is theL2 distance between the chromaticities(rgt, ggt) and(re, ge) of the illuminantsIgt

andIe respectively. The chromaticity of an illuminant(p0, p1, p2) is the pair (r = p0/(p0 + p1 + p2), g =
p1/(p0 + p1 + p2)). The chromaticity-based error on the illuminant estimate is defined as

E1(Igt, Ie) =
√

(rgt − re)2 + (ggt − ge)2. (18)
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Table 3 reports for each color constancy approach and for eachi = 0, 1, the root mean square error computed as

[ 1

Q

∑

(Igt,Ie)

Ei(Igt, Ie)
2
]

1

2 (19)

whereQ is the total number of illuminant pairs (Igt, Ie) taken into account.
In BEST-FIT and in our approach, the illuminant of an image has been computed by scaling the canonical

illuminant by the estimated von Kries coefficients. In our approach we used the finest color quantization (N =
256 bins,M = 100 bins).

There is a remarkable discrepancy between the errors output by BEST-FIT and by our approach and those
obtained by the color constancy algorithms in [31]. This is due to the different inputs of the considered al-
gorithms. In fact, the color constancy methods in [31] take as input just the canonical illuminantIllc and an
image, and use them to estimate the illuminant of the imageIllI . Then they compute the von Kries transform
relating theIllc and the estimate ofIllI and correct the input image as it would be captured under the reference
illuminant.
BEST-FIT and our approach require as input a reference image (NOTthe canonical illuminant) and a test im-
age, and calculate the von Kries transform relating the reference to the test. Then they correct the test image by
rescaling its channels according to the estimated von Kries coefficients. IfIllc is known, the illuminant of the
test image is estimated simply by scaling each components ofIllc by the correspondent von Kries coefficient.
Using a reference image instead of the canonical illuminant makes the estimate ofthe von Kries coefficients
more accurate and therefore provides a better image correction.
While the color constancy approaches in [31] are successfully applied inComputer Graphics, for instance to
improve the quality of digital photos, they are often not adequate for image and object recognition [30]. On the
contrary, in Section 5 we prove that the color enhancement based on ourestimate of the illuminant variation
allows good performances in the illuminant invariant image recognition.

Algorithm E0 E1

[degree]
NOTHING 17.9 0.125
AVE-ILLUM 12.9 0.094
GW 13.8 0.072
DB-GW 11.7 0.053
SCALE-BY-MAX 8.9 0.053
CIP-MV 23.4 0.149
CIP-AVE 16.1 0.105
CIP-ICA 10.6 0.076
NEURAL-NET 9.5 0.060
SP-NEURAL-NET 9.1 0.061

Algorithm E0 E1

[degree]
C-by-C-01 10.9 0.072
C-by-C-MAP 9.9 0.063
C-by-C-MLM 9.9 0.062
C-by-C-MMSE 9.9 0.061
CRULE-MV 5.6 0.043
CRULE-AVE 7.1 0.046
ECRULE-MV 5.6 0.040
ECRULE-AVE 6.9 0.046
ECRULE-ICA 7.0 0.047
BEST-FIT 1.9 0.015
OUR-METHOD 2.1 0.019

Table 3: Database BARNARD: Comparison of the errors of our approach, BEST-FIT and of the color constancy
algorithms presented in [31]. The errors of the methods in [31] have beenreported in this Table as well as they
are in [31] (see Table II first column, and Table III first column of [31]). An implementation of these approaches
is available athttp://kobus.ca/research/code/colour constancy/ .

5 Image Recognition

In this Section we show how the estimate of the von Kries transform can be used for achieving the illuminant
invariant image recognition.
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We stated the recognition problem as follows: let D be a database of known images (references), and letF a
set of illuminant transformations, and letd be a dissimilarity measure between images. Given a new unknown
imageI (query), the recognition ofI from D consists in finding the imageI0 of D and a transformT in F such
thatd(T (I0), I) = minF∈F ,Ir∈D d(F (Ir), I).
To find the reference (possibly relighted) most similar to an input query, wecompute the von Kries transforms
mapping each reference onto the query, and we associate a dissimilarity score to each of these transforms.
The solution is the reference whose von Kries transform has the minimum dissimilarity from the query. In
particular, we define the image dissimilarity as

∇ =
2

∑

i=0

M
∑

x=1

|αiΨi(x) − Ψ′
i(x)|. (20)

whereΨi andΨ′
i are the inversions of the cumulative histograms of theith channel of the query and reference

respectively. We note thei-th term in (20) is theL1 distance between the functionsαiΨi andΨ′
i (i = 0, 1, 2).

The dissimilarity score∇ between a queryIr and a referenceI depends on the transformK mappingIr onto
I, and therefore it is not a distance in the mathematical sense. In fact, because of it dependency on the von Kries
coefficients, it does not satisfy triangular inequality. Nevertheless,∇ is aquery-sensitivedissimilarity measure,
in the sense that it depends on the query. A mathematical formulation of the classification and retrieval problem
in case of query-sensitive measures is illustrated in [2].

In the following, we say that a queryIr is correctly recognized if the reference imageI of D minimizing
(20) is a re-lighted version ofIr. The performance of our approach has been evaluated by therecognition rate,
defined as the ratio between the number of test images correctly recognizedand the total number of test images.

In our experiments, we considered the reference and the test sets of TESTS51 and ALOI defined in Section
3. When no color normalization is applied, the mean recognition rate is about 0.10 for TESTS51, and about
0.76 for ALOI.
Figure 7 shows the recognition rates of TESTS51 for different values of N , while Figure 8 shows the recognition
rates for the different reference and test sets of ALOI whenN = 256 (Right) and when no color enhancement is
used (Left). An analysis about the recognition robustness with respectto the color quantization for the dataset
ALOI is reported in Figure 9(Left), that shows for each reference set the mean recognition rate on all the test
sets considered.

In the case of ALOI datasets, we compared our recognition rates with thoseobtained by using the color
normalization methods Gray-World and ACE. We normalized the reference and query colors by Gray-World
and ACE and we matched the color enhanced images by the dissimilarity measure (20) with αi = 1.0 for each
i = 0, 1, 2. Figure 9(Right) shows, for each reference set, our recognition rates averaged on all the test sets,
along with the recognition rates obtained by Gray World, ACE and without color enhancement. Both in terms
of recognition rate and program run time, our approach and the Gray-World based method show similar results,
while the use of ACE gives the worst performances. The smallest recognition rates output by our retrieval
method are obtained for the lamp voltagesV140 andV230, that produce a large number of saturated pixels,
determining a low accuracy on the determination of the von Kries coefficients and as consequence a decrement
of the recognition performances. In fact, for these voltages the image brightness is higher than in the other
cases.

6 Conclusions and Future Directions

In this paper we presented a new algorithm for computing the illuminant changepossibly occurring between two
images of a scene. Our approach approximates the illuminant variations with thevon Kries model and hence
assumes that the surfaces of the objects in the scene obey the Lambert’s reflectance laws. The illuminant change
between two pictures is computed by minimizing a dissimilarity measure between the piecewise inversions of
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Figure 7: TESTS51: Robustness of the recognition rate with respect to different color histogram quantizations.
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the cumulative color histograms of the considered images.
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The main advantages of our estimate are:i) linear complexity with respect to the number of image pixels and to
the color quantization, and consequent small run time for computing the von Kries coefficients (less than 0.04
seconds on an image of size 150× 200 pixels on a standard CPU Pentium4, 2.8 GHz),ii ) only two parameters
to be set up (N andM ), iii ) robustness to pixel saturation, image rescaling and in-plane rotating.
The experiments illustrated in Section 4 showed a high accuracy on the computation of the von Kries transform
and on the image color correction also by varying the color quantization parametersN andM . We compared
our approach with a best-fit method and with the color constancy algorithms described in [31]. Differently
from these color constancy techniques, given a single input image, our approach and BEST-FIT are not able
to determine its illuminant. These simply compute the von Kries map relating two pictures,and provided the
illuminant of one picture is known, they estimate that of the other. Nevertheless, BEST-FIT and our approach
are more adequate for the illuminant invariant image recognition than the color constancy algorithms. Given a
set of reference images and an unknown input image, the problem is to findthe reference possibly relighted that
is the most similar to the query. In this work we show how this goal can be achieved simply by estimating the
von Kries coefficients relating the query to each reference and by usingas dissimilarity measure the score (20).
The proposed recognition method avoids the color correction step, necessary in the recognition approaches
based on the color constancy methods, and guarantees higher performances. Moreover, differently from BEST-
FIT, our method allows the recognition of rescaled and/or rotated images.
The retrieval results reported in Section 5 aim at showing how our algorithmcompares to others when only
color information is used, but we are aware that a color analysis cannot be sufficient for image recognition in
the majority of the real world applications. In general other features, like texture and edges, are to be employed
in addition to colors. In this framework, our technique can be integrated in a more complete object and image
recognition system to provide information about possible changes of light and to enhance the image colors. In
particular, we plan to integrate our technique in the object and image recognizer MEMORI [33], in order to
make it invariant to changes of light. Moreover, we would like to investigate possible extensions of our approach
to non Lambertian surfaces and to the case of non uniform illumination. Considered that the von Kries model
cannot be applied on images taken with different devices, we are interested to develop new strategies or models
in order to make our estimatedevice-invariant.

References

[1] V. Agarwal, A. V. Gribok, and M. A. Abidi. Neural networks letter: Machine learning approach to color
constancy. InNeural Netw., 20(5):559–563, 2007.

[2] V. Athitsos, M. Hadjieleftheriou, G. Kollios, and S. Sclaroff. Query-sensitive embeddings. InSIGMOD
’05: Proceedings of the 2005 ACM SIGMOD international conference onManagement of data, pgg. 706–
717, New York, NY, USA, 2005. ACM Press.

[3] D. A. Forsyth, A novel algorithm for color constancy. InColor, 1992, pgg. 241–271

[4] E. Reinhard, M. Ashikhmin, B. Gooch, and P. Shirley. Color transfer between images. InIEEE Comput.
Graph. Appl., 21(5):34–41, 2001.

[5] G. D. Finlayson and S. D. Hordley and P. M. Hubel. Color by Correlation: A Simple, Unifying Framework
for Color Constancy. InIEEE Trans. Pattern Anal. Mach. Intell.Vol. 23, N. 11, 2001, pgg. 1209–1221

[6] B. Funt, V. Cardei, K. Barnard Method of estimating chromaticity of illumination using neural networks.
United States Patent 5907629, 1999

[7] J. Berens and G. Finlayson. Log-opponent chromaticity coding of colour space. In15th IEEE Int. Conf. on
Pattern Recognition, pages 206–211, 2000.



M. Lecca and S. Messelodi. / Electronic Letters on Computer Vision and Image Analysis 8(2):1-17, 2009 15

[8] A. Rizzi, C. Gatta and D. Marini. ACE: An automatic color equalization algorithm. In Proc. of CGIV2002
IS T, Poitiers, France, 2002.

[9] V. C. Cardei, B. Funt, and K. Barnard. Estimating the scene illumination chromaticity by using a neural
network. InJournal of the Optical Society of America A, 19:2374–2386, 2002.

[10] K. Deguchi, O. Kawanaka, and T. Okatani. Object tracking by the mean-shift of regional color distri-
bution combined with the particle-filter algorithm. InProceedings of ICPR ’04, Vol. 3, pages 506–509,
Washington, DC, USA, 2004. IEEE Computer Society.

[11] , D. L. Ruderman, Th. W. Cronin and C.C. Chiao, Statistics of Cone Responses to Natural Images:
Implications for Visual Coding. InJ. of the Optical Society of America A, Vol. 15, pages 2036–2045, 1998.

[12] , S. K. Nayar, E. Ikeuchi and T. Kanade, Surface reflection:Physical and geometrical perspectives. In
IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 13, pp. 611–634, 1991.

[13] L. T. Maloney, B. A. Wandell. Color Constancy: A Method for Recovering Surface Spectral Reflectance.
In J. Opt. Soc. Am. A, Vol. 3, No. 1/Jan. 1986, pp. 29-33.

[14] A. Rizzi, E. Provenzi, L. De Carli. Mathematical definition and analysisof the Retinex algorithm.Journal
of the Optical Society of America.Optics, image science, and vision, 22(12), 2005.

[15] G. Finlayson, S. Hordley, G. Schaefer, and G.Y. Tian. Illuminant and device invariance using histogram
equalisation. InIS&T and SID’s 11th Color Imaging Conference, pages 205–211, 2003.

[16] G. D. Finlayson, B. Schiele, and J. L. Crowley. Comprehensive colour image normalization. InECCV
’98: Proceedings of the 5th European Conference on Computer Vision-Volume I, pages 475–490, London,
UK, 1998. Springer-Verlag.

[17] B. V. Funt and G. D. Finlayson. Color constant color indexing. InIEEE Trans. Pattern Anal. Mach. Intell.,
17(5):522–529, 1995.

[18] B. V. Funt, G. D. Finlayson, M. S. Drew. Diagonal transforms suffice for color constancy. InProc. of
International Conference of Computer Vision, 1993.

[19] J.M. Geusebroek, J. Loost van de Weijer, and T. Gevers. Edgeand corner detection by photometric
quasi-invariants. InIEEE Trans. Pattern Anal. Mach. Intell., 27(4):625–630, 2005.

[20] J.M. Geusebroek, R. van den Boomgaard, A. W. M. Smeulders, and T. Gevers. Color constancy from
physical principles. InPattern Recogn. Lett., 24(11):1653–1662, 2003.

[21] G. J. Burghouts, J. M. Geusebroek and A. W. M. Smeulders. TheAmsterdam library of object images.
International Journal of Computer Vision, 61(1):103–112, 2005.

[22] E. H. Land. The Retinex theory of color vision. InScientific American, 237(6):108–128, 1977.

[23] D. G. Lowe. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision, 60(2):91–
110, 2004.

[24] D. Marimont and B. Wandell. Linear models of surface and illuminant spectra. InJ. Opt. Soc. Am.A,
Vol. 9, pp. 1905–1913, 1992.

[25] M. Ozden and E. Polat. A color image segmentation approach for content-based image retrieval. In
Pattern Recogn., 40(4):1318–1325, 2007.



16 M. Lecca and S. Messelodi / Electronic Letters on Computer Vision and Image Analysis 8(2):1-17, 2009

[26] F. Rothganger, S. Lazebnik, C. Schmid, and J. Ponce. 3D objectmodeling and recognition using local
affine-invariant image descriptors and multi-view spatial constraints. InInternational Journal of Computer
Vision, 66(3):231–259, 2006.

[27] R. Schettini, G. Ciocca, and S. Zuffi. A survey of methods for colour image indexing and retrieval in
image databases. InColor Imaging Science: Exploiting Digital Media, 2001.

[28] K. Barnard, L. Martin, B. Funt, and A. Coath. A data set for colorresearch. InColor Research and
Application, 27(3):148–152, 2002.

[29] K. Barnard, L. Martin, A. Coath, and B. Funt. A Comparison of Computational Color Constancy Algo-
rithms; Part One: Theory and Experiments with Synthetic Data. InIEEE Transactions in Image Processing,
11(9):985–996, 2002.

[30] B. Funt, K. Barnard, L. Martin. Is Machine Color Constancy Enough? InProc. of ECCV 98, 445–459,
1998 2002.

[31] K. Barnard, V. Cardei, and B. Funt. A comparison of computationalcolor constancy algorithms. Part
Two: Experiments with image data. InImage Processing, IEEE Transactions on, 11(9):985–996, 2002.

[32] M. Lecca, S. Messelodi. Estimating Illuminant Changes by Piecewise Inversion of Cumulative Color
Histograms.Technical Report, FBK-irst Protocol Number 200806010.

[33] M. Lecca. Object recognition in color images by the self configuring system MEMORI. InInternational
Journal of Signal Processing3 (2006) 176–185



M
.L

e
cca

a
n

d
S

.M
e

sse
lo

d
i.

/E
le

ctro
n

ic
L

e
tte

rs
o

n
C

o
m

p
u

te
r

V
isio

n
a

n
d

Im
age

A
n

a
lysis

8
(2

):1
-1

7
,2

0
0

9
17

(a)α0 ± ∆α0

Voltage of Voltage of the Tests
the References 110 120 130 140 150 160 170 180 190 210 230 250

110 * 0.973± 0.020 1.116± 0.047 0.936± 0.030 0.902± 0.038 0.897± 0.040 0.871± 0.045 0.862± 0.047 0.834± 0.051 0.890± 0.045 0.820± 0.055 0.820± 0.055
120 1.011± 0.013 * 1.129± 0.049 0.947± 0.025 0.912± 0.033 0.907± 0.035 0.881± 0.040 0.872± 0.042 0.843± 0.047 0.900± 0.041 0.829± 0.050 0.829± 0.050
130 1.028± 0.021 1.016± 0.013 * 0.962± 0.019 0.927± 0.028 0.922± 0.030 0.896± 0.036 0.886± 0.038 0.857± 0.044 0.915± 0.036 0.843± 0.047 0.843± 0.047
140 0.898± 0.037 0.887± 0.038 0.873± 0.040 * 0.807± 0.053 0.803± 0.054 0.779± 0.058 0.770± 0.059 0.744± 0.062 0.796± 0.057 0.731± 0.063 0.731± 0.063
150 1.070± 0.035 1.057± 0.028 1.040± 0.021 1.197± 0.067 * 0.959± 0.019 0.931± 0.026 0.921± 0.029 0.891± 0.034 0.951± 0.026 0.877± 0.038 0.877± 0.038
160 1.111± 0.047 1.098± 0.040 1.079± 0.033 1.244± 0.082 1.038± 0.016 * 0.966± 0.018 0.956± 0.021 0.925± 0.027 0.987± 0.021 0.910± 0.031 0.910± 0.031
170 1.117± 0.050 1.104± 0.043 1.086± 0.036 1.252± 0.085 1.044± 0.021 1.006± 0.011 * 0.961± 0.018 0.930± 0.024 0.992± 0.020 0.915± 0.029 0.915± 0.029
180 1.151± 0.060 1.137± 0.053 1.118± 0.046 1.291± 0.097 1.075± 0.030 1.035± 0.019 1.030± 0.014 * 0.957± 0.018 1.021± 0.019 0.942± 0.024 0.942± 0.024
190 1.164± 0.064 1.150± 0.057 1.131± 0.049 1.306± 0.101 1.086± 0.034 1.047± 0.023 1.041± 0.019 1.011± 0.011 * 1.032± 0.019 0.952± 0.021 0.952± 0.021
210 1.204± 0.075 1.190± 0.068 1.170± 0.060 1.353± 0.113 1.124± 0.044 1.082± 0.032 1.076± 0.029 1.045± 0.020 1.034± 0.014 * 0.984± 0.016 0.984± 0.016
230 1.127± 0.059 1.114± 0.051 1.095± 0.044 1.263± 0.092 1.052± 0.030 1.014± 0.022 1.009± 0.020 0.980± 0.018 0.969± 0.017 0.938± 0.019 * 0.922± 0.021
250 1.225± 0.083 1.210± 0.075 1.190± 0.067 1.378± 0.119 1.143± 0.050 1.100± 0.038 1.094± 0.035 1.063± 0.027 1.051± 0.024 1.017± 0.016 1.085± 0.024 *

(b) α1 ± ∆α1

Voltage of Voltage of the Tests
the References 110 120 130 140 150 160 170 180 190 210 230 250

110 * 1.025± 0.026 1.238± 0.071 1.025± 0.034 1.002± 0.036 1.014± 0.038 0.999± 0.040 1.003± 0.041 0.995± 0.043 1.076± 0.052 0.989± 0.047 0.989± 0.047
120 0.982± 0.017 * 1.216± 0.062 1.006± 0.027 0.984± 0.029 0.996± 0.032 0.981± 0.034 0.985± 0.035 0.977± 0.037 1.057± 0.044 0.972± 0.040 0.972± 0.040
130 0.976± 0.024 0.993± 0.016 * 0.999± 0.020 0.978± 0.024 0.989± 0.026 0.974± 0.029 0.978± 0.030 0.971± 0.032 1.050± 0.038 0.965± 0.035 0.965± 0.035
140 0.810± 0.046 0.825± 0.043 0.830± 0.040 * 0.812± 0.043 0.821± 0.043 0.809± 0.046 0.812± 0.046 0.806± 0.047 0.871± 0.040 0.801± 0.049 0.801± 0.049
150 0.977± 0.032 0.994± 0.026 1.001± 0.020 1.208± 0.056 * 0.990± 0.019 0.975± 0.023 0.979± 0.024 0.971± 0.026 1.050± 0.031 0.965± 0.029 0.965± 0.029
160 0.999± 0.036 1.017± 0.030 1.024± 0.025 1.236± 0.065 1.023± 0.014 * 0.997± 0.019 1.001± 0.021 0.993± 0.023 1.074± 0.032 0.987± 0.027 0.987± 0.027
170 0.987± 0.037 1.005± 0.032 1.012± 0.027 1.221± 0.063 1.011± 0.020 0.988± 0.013 * 0.989± 0.018 0.981± 0.021 1.061± 0.029 0.976± 0.025 0.976± 0.025
180 1.003± 0.040 1.020± 0.035 1.027± 0.031 1.240± 0.069 1.026± 0.024 1.004± 0.019 1.015± 0.014 * 0.996± 0.018 1.077± 0.030 0.990± 0.023 0.990± 0.023
190 0.999± 0.041 1.017± 0.036 1.023± 0.032 1.235± 0.069 1.023± 0.025 1.000± 0.021 1.012± 0.018 0.996± 0.012 * 1.073± 0.027 0.987± 0.022 0.987± 0.022
210 1.007± 0.043 1.025± 0.038 1.031± 0.034 1.245± 0.072 1.031± 0.028 1.008± 0.024 1.020± 0.022 1.004± 0.019 1.008± 0.013 * 0.994± 0.018 0.994± 0.018
230 0.931± 0.045 0.948± 0.039 0.954± 0.034 1.150± 0.053 0.953± 0.028 0.932± 0.028 0.943± 0.025 0.929± 0.025 0.932± 0.023 0.925± 0.020 * 0.920± 0.020
250 1.013± 0.049 1.031± 0.043 1.038± 0.039 1.253± 0.076 1.037± 0.032 1.014± 0.028 1.026± 0.026 1.010± 0.024 1.014± 0.023 1.006± 0.018 1.088± 0.023 *

(c) α2 ± ∆α2

Voltage of Voltage of the Tests
the References 110 120 130 140 150 160 170 180 190 210 230 250

110 * 1.082± 0.047 1.408± 0.088 1.131± 0.073 1.123± 0.081 1.162± 0.091 1.163± 0.097 1.189± 0.105 1.217± 0.116 1.355± 0.137 1.226± 0.123 1.226± 0.123
120 0.954± 0.027 * 1.342± 0.065 1.077± 0.050 1.070± 0.059 1.107± 0.068 1.107± 0.074 1.132± 0.080 1.159± 0.091 1.291± 0.109 1.167± 0.097 1.167± 0.097
130 0.926± 0.040 0.970± 0.023 * 1.044± 0.035 1.037± 0.044 1.073± 0.053 1.073± 0.059 1.097± 0.065 1.122± 0.075 1.250± 0.091 1.130± 0.081 1.130± 0.081
140 0.713± 0.045 0.747± 0.037 0.770± 0.031 * 0.798± 0.038 0.826± 0.042 0.826± 0.046 0.844± 0.049 0.864± 0.054 0.961± 0.057 0.870± 0.058 0.870± 0.058
150 0.888± 0.058 0.930± 0.043 0.959± 0.032 1.246± 0.048 * 1.027± 0.031 1.027± 0.037 1.050± 0.043 1.075± 0.051 1.196± 0.064 1.082± 0.057 1.082± 0.057
160 0.895± 0.066 0.937± 0.052 0.966± 0.041 1.255± 0.058 1.007± 0.020 * 1.034± 0.029 1.057± 0.035 1.082± 0.044 1.204± 0.058 1.089± 0.049 1.089± 0.049
170 0.866± 0.070 0.907± 0.057 0.935± 0.046 1.214± 0.060 0.974± 0.029 0.967± 0.018 * 1.022± 0.027 1.046± 0.035 1.164± 0.049 1.053± 0.041 1.053± 0.041
180 0.866± 0.075 0.907± 0.062 0.935± 0.052 1.215± 0.067 0.975± 0.036 0.968± 0.027 1.000± 0.019 * 1.046± 0.030 1.164± 0.045 1.053± 0.038 1.053± 0.038
190 0.848± 0.078 0.888± 0.065 0.915± 0.056 1.188± 0.069 0.954± 0.039 0.947± 0.032 0.979± 0.026 0.979± 0.017 * 1.139± 0.038 1.030± 0.032 1.030± 0.032
210 0.830± 0.083 0.868± 0.071 0.895± 0.061 1.162± 0.074 0.933± 0.045 0.926± 0.037 0.957± 0.033 0.957± 0.027 0.978± 0.019 * 1.007± 0.025 1.007± 0.025
230 0.746± 0.078 0.781± 0.068 0.804± 0.060 1.044± 0.064 0.838± 0.045 0.832± 0.040 0.860± 0.036 0.860± 0.033 0.879± 0.029 0.899± 0.022 * 0.905± 0.019
250 0.825± 0.087 0.863± 0.075 0.889± 0.066 1.155± 0.079 0.927± 0.049 0.920± 0.042 0.951± 0.038 0.951± 0.034 0.972± 0.030 0.994± 0.024 1.106± 0.023 *

Table 4: ALOI: Estimates ofα0, α1, α2 with error andN = 256. The entrykj of each Table is the mean value of the coefficients of the von Kries map
between the test images illuminated with voltageVk and the reference taken with voltageVj , and∆αi is the standard deviation of the von Kries coefficient
estimates.


