A GENERALIZATION OF ECHELON SPACES

G. Crofts

ABSTRACT

In the sense that echelon spaces are projective limits of isometries of l', the concept is generalized to projective limits of linear homeomorphic images of l' $\{E\}$, where E is a locally convex space. Characterizations of those generalized echelon spaces which are nuclear spaces and those which are Schwartz spaces are given.

* * *

The method of constructing echelon sequence spaces developed in [5] has been studied and generalized by many authors (e. g. [2] and [7]). In [7] a generalization to vector valued sequence spaces was studied. We will generalize the construction of echelon spaces to vector valued sequence spaces in a manner different from [7]. The motivation of this work was to define a construction which would allow generalizations of the characterizations of nuclear and Schwartz echelon spaces (see [8] and [1]).

The generalized echelon spaces are defined in § 3 and consist of projective limits of spaces $l^r\{E\}$, for E locally convex. The characterizations involve properties of the projective system of operators for the projective limit. In § 4 we give some examples and apply our results to $\lambda\{E\}$, where λ is a sequence space.

All notation and terminology not defined can be found in [6].

§ 1. Definitions and Notation

Let E be a vector space over the real or complex field. Let $\omega(E)$ denote the collection of all sequences in E and let $\varphi(E)$ denote the collection of sequences in E which are finitely nonzero. Under coor-

dinatewise operations $\varphi(E)$ and $\omega(E)$ are vector spaces. By a vector sequence space over E we mean a vector subspace of $\omega(E)$ which contains $\varphi(E)$ (see [3]).

For E as above and U an absolutely convex, absorbing subset of E, we denote by p_U the gauge determined by U on E. E_U will denote E/p_U^{-1} ($\{0\}$) with the quotient norm given from p_U .

If E has a locally convex topology assigned, then throughout the paper we will mean by η (E) a zero neighborhood base for the topology of E, consisting of barrels.

The following vector sequence spaces over E are used throughout this paper:

- i) $l^r\{E\} = \{x \in \omega(E) \mid \Sigma_{n=1}^{\infty}(p_U(x_n^r)) < \infty, \text{ for each } U \in \eta(E)\},$ topologized by the seminorms $\Pi_U^r(x) = (\Sigma_{n=1}^{\infty}(p_U(x_n))^r)^{1/r}, \text{ for } 1 \leq r < \infty.$
- ii) $l^{\infty}\{E\} = \{x \in \omega(E) \mid \sup \{p_U(x_n) \mid i = 1, 2, ...\} < \infty$, for each $U \in \eta(E)\}$, topologized by the seminorms $\Pi_U^{\infty} = \sup \{p_U(x_n) \mid i = 1, 2, ...\}$.
- iii) $c_0\{E\} = \{x \in \omega(E) | \lim_{n \to \infty} p_U(x_n) = 0, \text{ for each } U \in \eta(E)\}, \text{ topologized as in ii).}$

If E is a normed space, then from [6], page 359, $(l'\{E\})' = l'\{E\})$, where 1/r + 1/r' = 1, if $1 < r < \infty$, and $r' = \infty$ if r = 1. The bilinear form is given by $< a, x > = \sum_{i=1}^{\infty} < a_i, x_i >$, where $< a_i, x_i >$ is the bilinear form between E and E'.

For S(E) a vector sequence space over E and $y = (y_n)$ an element of S(E), we denote by y^i , the element of S(E) which has y_i , as the ith component and 0 for all other components. $y^{(n)}$ will denote the element $\sum_{i=1}^{n} ye^i$ in S(E).

Let S(E) and R(F) denote vector sequence spaces over E and F, respectively. A linear map T from S(E) into R(F) will be called a diagonal map if the action of T is $T(x) = (T_n(x_n))$, for some sequence $\{T_n\}$ of linear maps from E into F. For T a diagonal map we denote by T^e the map $T^i(x) = (T(x))e^i$, and by $T^{(n)}$ the map $T^{(n)}(x) = (T(x))^{(n)}$.

A linear map B from a normed space G into a normed space F is said to be *nuclear* if there are sequences $\{b_n\} \subset G'$, and $\{y_n\} \subset F$,

such that $B(x) = \sum_{n=1}^{\infty} \langle b_n, x \rangle y_n$ and $\sum_{n=1}^{\infty} ||b_n|| ||y_n|| \langle \infty$ (see [8]). The nuclear norm of B is given by

$$\nu(B) = \inf \{ \sum_{n=1}^{\infty} ||b_n|| ||y_n|| | \text{ the } \{b_n\} \text{ and } \{y_n\}$$
 satisfy the properties above}.

If B is a continuous linear map, we will use $\beta(B)$ to denote the operator norm of B.

A locally convex space E is said to be a *nuclear space* if for each $U \in \eta(E)$ there is a $V \in \eta(E)$, $V \subset U$, such that the canonical map from \widehat{E}_V into \widehat{E}_U is nuclear, where \widehat{E}_U is the completion of E_U (see [9]). A locally convex space E is said to be a *Schwartz space* if for each $U \in \eta(E)$ there is a $V \in \eta(E)$, $V \subset U$, such that the canonical map from \widehat{E}_V into \widehat{E}_U is compact (see [10]).

§ 2. DIAGONAL MAPS

Throughout this section we assume E and F are normed spaces with $1 \le r < \infty$. Characterizations of those diagonal maps from $l^r\{E\}$ into $l^r\{F\}$ which are nuclear and those which are precompact are presented. These characterizations are those expected from the comparable results in l^r (see [11] and [1]).

2.1. Proposition: A diagonal map T from $l^r\{E\}$ into $l^r\{F\}$ is nuclear if and only if for each i, T_i is a nuclear and $\sum_{i=1}^{\infty} v(T_i) < \infty$, where v is the nuclear norm of maps from E to F. Also, the nuclear norm of T, v(T), is given by $\sum_{i=1}^{\infty} v(T_i)$.

PROOF: We first assume T is nuclear. Hence T has the form

$$T(x) = \sum_{n=1}^{\infty} \langle x, a \rangle y^n$$

for some $\{a^n\} \subset (l^r\{E\})'$ and some $\{y^n\} \subset l^r\{F\}$ with $\sum_{n=1}^{\infty} ||a^n||_{r'} ||y^n||_r < \infty$. (As before 1/r + 1/r' = 1, for $1 < r < \infty$, and $r' = \infty$, if r = 1). Since $(l^r\{E\})' = l^{r'}\{E'\}$, each a_i^n is in E'. Using the notation of § 1 we have

$$T^{i}(x) = T(xe^{i}) = \sum_{n=1}^{\infty} \langle xe^{i}, a^{n} \rangle y^{n} = \sum_{n=1}^{\infty} \langle x_{i}, a^{n}_{i} \rangle y^{n} e^{i}$$

Hence

$$T_i(x_i) = \sum_{n=1}^{\infty} \langle x_i, a_i^n \rangle y_i^n$$

with

$$\Sigma_{n=1}^{\infty} ||a_i^n||_{E'} ||y_i^n||_{E} \leq \Sigma_{n=1}^{\infty} ||a^n||_{r'} ||y^n||_{r} < \infty.$$

Thus each T_i is nuclear.

From the definition $\nu(T_i) \leq \sum_{n=1}^{\infty} ||a_i^n||_{E'} ||y_i^n||_F$. Thus

$$\begin{split} & \Sigma_{i=1}^{\infty} \, \nu \left(T_{i} \right) \leq \Sigma_{i=1}^{\infty} \, \Sigma_{n=1}^{\infty} \, || \, a_{i}^{n} ||_{E'} \, || \, y_{i}^{n} \, ||_{F} = \\ & = \Sigma_{n=1}^{\infty} \, \Sigma_{i=1}^{\infty} \, || \, a_{i}^{n} \, ||_{E'} \, || \, y_{i}^{n} ||_{F} \leq \Sigma_{n=1}^{\infty} \, || \, a^{n} \, ||_{F'} \, || \, y^{n} ||_{F} < \infty \,, \end{split}$$

using Holder's inequality to obtain the second inequality. This shows the necessity of the condition and also yields $\sum_{i=1}^{\infty} \nu(T_i) < \nu(T)$.

We now assume each T_i is nuclear with $\Sigma_{i=1}^{\infty} v\left(T_i\right) < \infty$. From our assumption each T_i has the form $T_i\left(x_i\right) = \Sigma_{n=1}^{\infty} < a_i^n, \, x_i > y_i^n$, where $\{a_i^n\} \subset E', \, \{y_i^n\} \subset F$, and $\Sigma_{n=1}^{\infty} ||a_i^n||_{E'} ||y_i^n||_F < \infty$. Let $\{a^n\}$ and $\{y^n\}$ be the elements of $\omega\left(E'\right)$ and $\omega\left(F\right)$ given by $a^n = (a_i^n), \, y^n = (y_i^n)$. This yields $T^i\left(x\right) = \Sigma_{n=1}^{\infty} < a^n e^i, \, x > y^n e^i$, with

$$\Sigma_{n=1}^{\infty} ||a^n e^i||_{r'} ||y^n e^i||_{r} = \Sigma_{n=1}^{\infty} ||a_i^n||_{E'} ||y_i^n||_{F} < \infty.$$

Hence T^i is nuclear with $\nu(T^i) \leq \nu(T_i)$.

Since $T^{(n)} = \sum_{i=1}^n T^i$, we have $T^{(n)}$ nuclear. For $n \leq m$, $v\left(T^{(m)} - T^{(n)}\right) \leq \sum_{i=n+1}^m v\left(T_i\right)$. Thus $\{T^{(n)}\}$ is a Cauchy sequence in the normed space of nuclear maps from $l^r\{E\}$ into $l^r\{F\}$. Clearly $\lim_{n\to\infty} T^{(n)}(x) = T(x)$ in the norm of $l^r\{F\}$, for each $x \in l^r\{E\}$. Hence by 3.1.3 of [8], T is nuclear from $l^r\{E\}$ into $l^r\{F\}$, with $T = \lim_{n\to\infty} T^{(n)}$ in the nuclear norm. Therefore $v\left(T\right) \leq \sum_{i=1}^\infty v\left(T\right) \leq \sum_{i=1}^\infty v\left(T_i\right)$.

- 2.2 Remark: If E and F are Banach spaces and either E' or F has the approximation property, then it follows from [4], page 158, and 2.1, that the space of diagonal nuclear maps from $l^r\{E\}$ into $l^r\{F\}$ is just $l^i\{E' \otimes F\}$, where \otimes denotes the projective tensor product.
- 2.3 Proposition: A diagonal map T from $l^r\{E\}$ into $l^r\{F\}$ is precompact if and only if each T_i is precompact and $\lim_{i\to\infty}\beta\left(T_i\right)=0$. Also, $\beta\left(T\right)=\sup\left\{\beta\left(T_i\right)\mid i=1,2,\ldots\right\}$.

PROOF: We first suppose that T is precompact. Let B_E denote the unit ball of E and let $B_{l'\{E\}}$ denote the unit ball of $l'\{E\}$. Our assumtion is that $T(B_{l'\{E\}})$ is precompact in $l'\{F\}$. Thus for fixed i, $\{(T(x))e^i \mid x_i \in B_E\}$ is precompact in F. This verifies that each T_i is precompact.

Let $\varepsilon > 0$ be given. For each i let $z_i \in B_E$ with $\beta(T_i) < ||T_i(z_i)||_F + \varepsilon$. The set $\{T(ze^i) \mid i=1,2,...\}$ is precompact in $l^r\{F\}$. Hence there is a finite set $\{y^1,y^2,...,y^m\} \subset l^r\{F\}$ with the property that for each i there is a j with $||T(ze^i) - y^j|| < \varepsilon$. Since $r < \infty$, there is an integer n_0 with $||y^j_n|| < \nu$, each j=1,2,...,m, and each $n \geq n_0$. Finally for $n \geq n_0$

$$\beta(T_n) < ||T_n(z_n)||_F + \varepsilon \leq ||y_n^j||_F + ||T(ze^n) - y^j||_F + \varepsilon < 3\varepsilon.$$

Conversely, suppose each T_i is precompact with $\lim_{i\to\infty}\beta\left(T_i\right)=0$. Thus T^i is precompact and $T^{(n)}$ is precompact from $l^r\left\{E\right\}$ into $l^r\left\{F\right\}$. From the definitions

$$\begin{split} \beta\left(T-T^{(n)}\right) &= \sup \left\{ \left(\Sigma_{i=n+1}^{\infty} ||T_{i}(x_{i})||^{r} \right)^{1/r} | x \in l^{r} \left\{ E \right\}, ||x||_{r} \leq 1 \right\} \\ &\leq \sup \left\{ \left(\Sigma_{i=n+1}^{\infty} \left(\beta\left(T_{i}\right) ||x_{i}||_{E} \right)^{r} \right)^{1/r} |||x||_{r} \leq 1 \right\} \\ &\leq \sup \left\{ \beta\left(T_{i}\right) |i| \geq n+1 \right\}. \end{split}$$

Since $\{\beta(T_i)\}$ converges to 0, it follows that $\{T^{(n)}\}$ converges to T with respect to the β norm. Thus T is precompact.

The method used in the previous paragraph also shows that $\beta(T) \leq \sup \{\beta(T_i) \mid i = 1, 2, ...\}$. The reverse inequality is clear.

2.4 REMARK: If E and F are Banach spaces and either E' or F has the approximation property, then from [4, page 168] or [9, page 114] and 2.3, we may conclude that the space of diagonal compact maps of l' $\{E\}$ into l' $\{F\}$ is just c_0 $\{E' \otimes F\}$, where \otimes denotes the bi-equicontinuous tensor topology.

\S 3. Echelon Spaces Over E

After defining echelon spaces over E we will characterize those which are nuclear spaces and those which are Schwartz spaces. Throughout this section E is a locally convex space.

- 3.1 Definition: Let $1 \le r < \infty$ and let $\{T^k\}$ be a sequence of diagonal maps from $l^r\{E\}$ into $l^r\{E\}$ satisfying for each i and k:
 - i) $T_i^k: E \to E$ is a linear homeomorphism.
- ii) $T_i^{k+1}(U) \subset T_i^k(U)$, for each $U \in \eta(E)$, $\eta(E)$ some zero neighborhood base for E.

Such a sequence of maps will be called a sequence of echelon type.

3.2 Lemma: If $\{T^k\}$ is of echelon type, then $T^{k+1}(l^k\{E\}) \subset T^k(l^k\{E\})$, for each k.

PROOF: Let $\eta(E)$ be a fundamental system of zero neighborhoods satisfying (ii) of 3.1. Given $U \in \eta(E)$ and i and k arbitrary, $p_{T_i^k(U)}$ is a continuous semi-norm on E. It is straightforward to check that $p_{T_i^k(U)}(x_i) = p_U((T_i^k)^{-1}(x_i))$, for $x_i \in E$. Thus $x \in \omega(E)$ is in $T^k(l^r\{E\})$ if and only if $\sum_{i=1}^{\infty} (p_{T_i^k(U)}(x_i))^r < \infty$, for each $U \in \eta(E)$. Property (ii), of 3.1, yields $p_{T_i^{k+1}(U)}(x_i) \ge p_{T_i^k(U)}(x_i)$, for each $x_i \in E$. The result easily follows.

For $\{T^k\}$ a sequence of echelon type we have $T^k(l^r\{E\})$ a vector sequence space in $\omega(E)$, for each k. Hence $\bigcap_k T^k(l^r\{E\})$ is a vector sequence space which we shall call an *echelon space over* E, and denote by S(E).

We can view S(E) as the kernel of the spaces $T^k(l^r\{E\})$. We give each $T^k(l^r\{E\})$ the topology causing $T^k(l^r\{E\})$ and $l^r\{E\}$ to be linearly homeomorphic under T^k . Thus S(E) can be assigned the kernel-topology determined by the topology given to $T^k(l^r\{E\})$. Using [6], page 226, and the inclusion given in 3.2, a fundamental system of zero neighborhoods for the kernel-topology on S(E) is given by all sets of the form $S(E) \cap T^k(W_U)$, where $U \in \eta(E)$, k is a natural number, and

$$W_{U} = \{x \in l^{r} \{E\} \mid (\Sigma_{i=1}^{\infty} (p_{U}(x_{i}))^{r})^{1/r} \leq 1\}.$$

For the remainder of the paper S(E) will be understood to have this topology.

To simplify notation we shall denote by $S_{k,U}$ the normed space $S(E)_{(T^k(W_U) \cap S(E))}$, for $U \in \eta(E)$.

3.3 Lemma: Suppose $1 \le r < \infty$ and S(E) is an echelon space over E. The completion of $S_{k,U}$ is isometric to $\ell^r\{\widehat{E}_U\}$, where \widehat{E}_U is the completion of E_U .

PROOF: Some details of this proof are omitted, but in each case the details are straightforward.

Let μ denote the quotient map of E onto $E_{\mathcal{U}}$, with q denoting the gauge of U on E. Let p denote the gauge of $T^k(W_U) \cap S(E)$ on S(E) with G denoting $p^{-1}(\{0\})$. Define $\Psi: S_{k,U} \to l^r(E_U)$ by $\Psi(x+G) = (\mu \circ (T_i^k)^{-1}(x_i))_i$. Ψ is clearly linear and we will show that Ψ is an isometry.

For $x + G \in S_{k,U}$, let ||x + G|| denote the norm of x + G in $S_{k,U}$. By definition $||x + G|| = \inf \{ p (x + g) \mid g \in G \}$. For $y \in l^r \{E\}$, let $||y||_U$ denote the norm of $(\mu(y_i))_i$ in $l^r \{E_U\}$. By definition $||y||_U = (\Sigma_{i=1}^{\infty} < \inf \{ q (y_i + t) \mid t \in q^{-1} (\{0\})\} >^r)^{1/r}$. Given $g \in G$, we have $p(x+g) = p_{W_U}((T^k)^{-1}(x+g)) = (\Sigma_{i=1}^{\infty} (q((T^k)^{-1}(x_i)))^r)^{1/r} \ge ||(T^k)^{-1}(x)||_U$, the second equality following since $q((T^k)^{-1}(g_i)) = 0$, for $g \in G$. Thus $||x + G|| \ge ||(T^k)^{-1}(x)||_U$.

For the reverse inequality let $0 < \varepsilon < 1$ be given. By the definitions of $S_{k,U}$ and $l^r\{E\}$, there is an n_0 for which $||x-x^{(n_0)}+G|| < \varepsilon$. Also, for each $i, l \le i \le n_0$, there is a t_i in $q^{-1}(\{0\})$ with $q((T_i^k)^{-1}(x_i)+t_i)-(\varepsilon/2i)<$ norm of $\mu((T_i^k)^{-1}(x_i))$ in E_U . Define $z=(z_i)$ by $z_i=(T_i^k)^{-1}(x_i)+t_i$, $1 \le i \le n_0$, and $z_i=0$ otherwise. Then $T^k(z)+t_0 = x^{(n_0)}+G$. Using the Minkowski inequality for the last of the following inequalities, we have

$$||x + G|| \le ||x^{(n_0)} + G|| + ||x - x^{(n_0)} + G|| < ||T^k(z) + G|| + \varepsilon \le$$

$$\varepsilon + (\sum_{i=1}^{n_0} (q(z_i))^i)^{1/r} < \varepsilon + \varepsilon + ||(T^k)^{-1}(x)||_U.$$

The arbitrariness of ε gives the desired inequality.

It is easy to check that $l^r\{E_U\}$ is isometric to a dense subspace of $l^r\{\widehat{E}_U\}$. The lemma will be proved if we can show that $\Psi(S_{k,U})$ is dense in $l^r\{E_U\}$. Let $w=(w_i)\in\varphi(E_U)$. Then $w_i=0+q^{-1}(\{0\})$ for each $i>n_1$, some n_1 , and $w_i=y_i+q^{-1}(\{0\})$ for $1\leq i\leq n_1$, with $y_i\in E$. Define $z=(z_i)$ by $z_i=y_i$, for $1\leq i\leq n_1$, and $z_i=0$ otherwise. Then $T^k(z)+G\in S_{k,U}$ and $\Psi(T^k(z)+G)=w$. The denseness of $\varphi(E_U)$ in $l^r\{E_U\}$ completes the proof.

We can now give the characterizations announced at the beginning of the section.

If k is an integr and $U \in \eta(E)$, let \widetilde{T}_i^k denote the linear map from \widehat{E}_U into $\widehat{E}_{T_i^k(U)}$ induced by T_i^k , and let $(T_i^k)^{-1}$ denote the linear map from $\widehat{E}_{T_i^k(U)}$ into \widehat{E}_U induced by $(T_i^k)^{-1}$.

3.4 THEOREM: Suppose $1 \le r < \infty$ and let $S(E) = \bigcap_k T^k(\mathcal{V}\{E\})$ be an echelon space over E. Then S(E) is a nuclear space if and only if there is an $\eta(E)$ so that given k and $U \in \eta(E)$, there is a j and a $V \in \eta(E)$ for which $\widehat{T_i^i} \circ (\widetilde{T_i^i})$ is a nuclear map from \widehat{E}_V into \widehat{E}_U , for each i, and

$$\sum_{i=1}^{\infty} \nu\left((\widetilde{T_i^k})^{-1} \circ (\widetilde{T}_i^j)\right) < \infty$$
,

where ν is the nuclear norm for maps of \widehat{E}_{V} into \widehat{E}_{U} .

PROOF: Let k and j be integers with $j \geq k$, and let U and V be elements of $\eta(E)$ with $V \subset U$. Let Ψ^j and Ψ^k , respectively, denote the isometry of $S_{i,V}$ into $l^r\{\widehat{E}_V\}$ and the isometry of $S_{k,U}$ into $l^r\{\widehat{E}_V\}$ described in the proof of 3.3. The following diagram then commutes:

$$\begin{array}{ccc} S_{j,V} & \overset{\text{canonical}}{\xrightarrow{\text{map}}} & S_{k,U} \\ \downarrow \psi_{j} & \overset{\text{map}}{\xrightarrow{\text{map}}} & \psi_{k} \downarrow \\ \ell'\{E_{V}\} & \underbrace{(\widetilde{T^{k}})^{-1} \circ (\widetilde{T}^{j})}_{\ell''\{E_{U}\}}. \end{array}$$

Thus from 3.3 and the defintion of a nuclear space, the space S(E) is nuclear if and only if $(\widetilde{T^k})^{-1} \circ (\widetilde{T^i})$ is a nuclear map from $l^r\{\hat{E}_{l^r}\}$ into $l^r\{\hat{E}_{l^r}\}$. The theorem thus follows from 2.1.

3.5 THEOREM: Suppose $1 \le r < \infty$ and let $S(E) = \bigcap_k T^k(l^r\{E\})$ an echelon space over E. Then S(E) is a Schwartz space if and only be if there is an $\eta(E)$ so that given k and $U \in \eta(E)$, there is a j a and $V \in \eta(E)$ for which $(T_i^i)^{-1} \circ (\widetilde{T}_i^i)$ is a compact map from \hat{E}_V to \hat{E}_U , for each i, and

$$\lim_{i\to\infty}\beta\,(\widehat{(T_i^k)^{-1}}\circ(\widetilde{T}_i^i))=0,$$

where β is the operator norm for maps from \hat{E}_{ν} into \hat{E}_{ν} .

PROOF: The proof is similar to 3.4 using 2.3 instead of 2.1 for the final conclusion.

3.6 REMARK: Let S(E) be an echelon space on E. Since each T_1^k is a linear homeomorphism of E into E, the collection $\{T_1^k(U) \mid k=1, 2, ..., m\}$

and $U \in \eta(E)$ forms a zero neighborhood base for E. If k and $U \in \eta(E)$ are given, then for j > k and $V \subset U$, $V \in \eta(E)$, it makes sense to speak of the canonical map of $\hat{E}_{T_1^k(V)}$ into $\hat{E}_{T_1^k(V)}$. This map is of the form $(\widetilde{T}_1^k) \circ (\widetilde{T}_1^i)^{-1} \circ (\widetilde{T}_1^i) \circ (\widetilde{T}_1^i)^{-1}$. The composition of continuous maps and a nuclear (compact) map results in a nuclear (compact) map. Thus using 3.4 (3.5) we note that E is a nuclear (Schwartz) space if S(E) is a nuclear (Schwartz) space.

§ 4. Examples, and Application to $\lambda \{E\}$

In this section we show the existence of echelon spaces over E by giving some examples. These examples and the conclusions of § 3 provide knowledge about $\lambda \{E\}$.

4.1 Examples: 1. Let E be a locally convex space with $\{f_n\}$ a sequence of linear homeomorphisms of E into E. Let $\{a^k\}$ be a sequence of sequences of real numbers with $0 < a_n^k < a_n^{k+1}$, for each k and n. Define $\{T^k\}$ by $T_n^k = (1/a_n^k)f_n$. Then $S(E) = \bigcap_k T^k(l^r \{E\})$ is an echelon space over E.

PROOF: We need only check that $\{T^k\}$ is a sequence of echelon type. Clearly each T_n^k is a linear homeomorphism. For U a zero neighborhood of E, $T_n^{k+1}(U) = (1/a_n^{k+1}) f_n(U) \subset (1/a) f_n(U) = T_n^k(U)$.

2. Let $\{T^k\}$ be as in 1. and let E be a nuclear space with $\sum_{n=1}^{\infty} a_n^k/a_n^{k+1} < \infty$, for each k. Then $S(E) = \bigcap_k T^k(l^r\{E\})$ is a nuclear space.

PROOF: If $U \in \eta(E)$, then by the nuclearity of E there is a $V \in \eta(E)$, $V \subset U$, with the canonical map $\Psi: E_V \to E_U$ a nuclear map. By definition $(\widetilde{T_n^k})^{-1} \circ (\widetilde{T}_n^i) = (a_n^k/a_n^i) \Psi$, and hence $v((\widetilde{T_n^k})^{-1} \circ (\widetilde{T}_n^i)) = (a_n^k/a_n^i) v(\Psi)$. Thus for j > k, the property of 3.4 holds.

3. Let $\{T^k\}$ be as in 1., and let E be a Schwartz space with $\lim_{n\to\infty} a_n^k/a_n^{k+1} = 0$, for each k. Then $S(E) = \bigcap_k T^k(l^r\{E\})$ is a Schwartz space.

PROOF: Similar to 2.

Let λ be a normal sequence space over the complex or real field. Suppose λ has the topology $\mathcal{I}_b(\lambda^x, \lambda)$ (see [6]). Let E be a locally convex space. By $\lambda \{E\}$ we mean $\{x \in \omega(E) \mid (p_U(x_n))_n \in \lambda$, for each $U \in \eta(E)\}$. $\lambda \{E\}$ is topologized by the semi-norms $q((p_U(x_n))_n)$, where q ranges over the continuous semi-norms of λ .

Suppose λ is the echelon space $\bigcap_k (1/a^k) l'$ (see [2]) and $\{T^k\}$ is given as in 4.1 with f_n the identity map for each n. Then $\lambda \{E\}$ and S(E) are equal both algebraically and topologically. The algebraic equality follows since x is in $\lambda \{E\}$ if and only if $(p_U(x_n))_n \in \lambda$, for and each $U \in \eta(E)$, if and only if $(a_n^k p_U(x_n))_n \in l'$, for each k and each U, if and only if $(a_n^k x_n)_n \in l'\{E\}$, for each k. However, $(a_n^k x_n)_n = (T^k)^{-1}(x)$. Writing explicitly a fundamental zero neighborhood for S(E) and a fundamental zero neighborhood for $\lambda \{E\}$ will show the topological equality. Such a neighborhood in S(E) is $\{x \mid (T^k)^{-1}(x) = (a_n^k x_n)_n \text{ satisfies } (\sum_{n=1}^{\infty} (p_U(a_n^k x_n))^r)^{1/r} \leq 1$, for some $U \in \eta(E)$ } (recall the discussion after 3.3). A zero neighborhood in $\lambda \{E\}$ is $\{x \mid (a_n^k (p_U(x_n))_n) \text{ is in the unit ball of } l'$ for some $U \in \eta(E)$ }.

Using 3.4, 3.5, and 4.1 we have established:

- 4.3 Proposition: If λ is a nuclear (Schwartz) echelon space of the form $\lambda = \bigcap_k (1/a^k) l^r$ and E is a nuclear (Schwartz) space, then $\lambda \{E\}$ is a nuclear (Schwartz) space.
- 4.4 Remark: As stated in the introduction the motivation was to obtain theorems which were generalizations of theorems for echelon spaces. This is the only reason we consider only a sequence of functions in 3.1 and 3.2 Each of the theorems and examples are valid for the case $\{T^{\alpha}\}$ is a net of diagonal functions.

REFERENCES

- 1. Crofts, G.: Concerning perfect Frechet spaces and diagonal transformations. *Math. Ann.* 182, 67-76 (1969).
- 2. Dubinsky, E.: Perfect Frechet spaces. Math. Ann. 174, 186-194 (1967).
- Gregory, D. A.: Some basic properties of vector sequence spaces. J. Reine Angew. Math. 237, 26-38 (1969).
- Grothendieck, A.: Products tensorials topologiques et espaces nucleaires. Mem. Amer. Math. Soc. 16 (1955).
- 5. KÖTHE, G.: Die Stufenraume. Eine einfache Klasse Linearen vollkommener Raume. *Math Zeitschr.* 51, 317-345 (1948).
- KÖTHE, G.: Topologische linear Räume. I, Die Grundlehren der math. Wissenschaften, Band 107, Springer-Verlag, Berlin, 1966; English transl., Die Grundlehren der math. Wissenschaften, Band 159, Springer-Verlag, New York, 1969.
- Nguyen Phoung-Cac: On some spaces of vector-valued sequences. Math. Zeitschr. 95, 242-250 (1967).
- 8. PIETSCH, A.: Nukleare lokalkonvexe Räume. Akademic-Verlag. Berlin 1965.
- SCHAEFER, H. H.: Topological Vector Spaces. Springer-Verlag, New York, Heidelberg, Berlin 1971.
- 10. TERZIOGI,U, T.: On Schwartz spaces. Math. Ann. 182, 236-242, (1969).
- 11. Tong, A.: Diagonal nuclear operators on l^p spaces. Trans. Amer. Math. Soc. 143, 235-247 (1969).

George Crofts Virginia Polytechnic Institute and State University Blacksburg, Virginia 24061

