A GENERALIZATION OF ECHELON SPACES

G. Crorrs

ABSTRACT

In the sense that echelon spaces are projective limits of isometries
of I, the concept is generalized to projective limits of linear homeo-
morphic images of I’ {E}, where E is a locally convex space. Charac-
terizations of those generalized echelon spaces which are nuclear spa-
ces and those which are Schwartz spaces are given.

The method of constructing echelon sequence spaces developed in
[5] has been studied and generalized by many authors (e. g. [2] and
[7]). In [7] a generalization to vector valued sequence spaces was
studied. We will generalize the construction of echelon spaces to vec-
tor valued sequence spaces in a manner different from [7]. The mo-
tivation of this work was to define a construction which would allow
generalizations of the characterizations of nuclear and Schwartz eche-
lon spaces (see [8] and [1]).

The generalized echelon spaces are defined in § 3 and consist of
projective limits of spaces /' {E}, for E locally convex. The char-
acterizations involve properties of the projective system of operators
for the projective limit. In § 4 we give some examples and apply our
results to A{E}, where X is a sequence space.

All notation and terminology not defined can be found in [6].

§ 1. DEFINITIONS AND NOTATION

Let E be a vector space over the real or complex field. Let w (E)
denote the collection of all sequences in E and let ¢ (E) denote the
collection of sequences in E which are finitely nonzero. Under coor-



140 G. Crofts

dinatewise operations ¢ (E) and o (E) are vector spaces. By a vector
sequence space over E we mean a vector subspace of w (E) which con-
tains @ (E) (see [3]).

For E as above and U an absolutely convex, absorbing subset of E,
we denote by p, the gauge determined by U on E. E, will denote
E[p5' ({0y) with the quotient norm given from p.

If E has a locally convex topology assigned, then throughout the
paper we will mean by 7 (E) a zero neighborhood base for the topo-
logy of E, consisting of barrels.

The following vector sequence spaces over E are used throughout
this paper:

i) I'iEy = xew(E)| 22 (py () < oo, for each U ey (E)},
topologized by the seminorms Iy (x) = (232 (py (%)), for
1 <7< oo,

il) l°{E} = {xew(E)|sup {py(x,) |2 =1,2,..} < oo, for each
U en(E)}, topologized by the seminorms IIg = sup {py (%,) |7 =
=12 .1}

iii) ¢o{E} = {x e w (E) |lim py (x,) = 0, for each U e (E)}, to-

n—>00

pologized as in ii).

If E is a normed space, then from [6], page 359, (" {E}) =I"{E"},
where 1/r 4 1[r' =1, if 1 <7 < oo, and 7' = o if = 1. The bili-
near form is given by < a, x > = 2{2; < a;, ¥, >, where < a,, ¥, >
is the bilinear form between E and E’.

For S (E) a vector sequence space over E and y = (y,) an element
of S(E), we denote by y'. the element of S (E) which has y,. as the
ith component and 0 for all other components. y will denote the
element 2., ye! in S (E). .

Let S (E) and R (F) denote vector sequence spaces over E and F,
respectively. A linear map T from S (E) into R (F) will be called a
diagonal map if the action of T is T (x) = (T, (x,)), for some sequence
{T,} of linear maps from E into F. For T a diagonal map we denote
by T¢ the map Ti(x) = (T (x))¢’, and by T™ the map T™ (x) =
= (T (%)™

A linear map B from a normed space G into a normed space F
is said to be nuclear if there are sequences {»,} c¢ G', and {y,} c F,
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such that B(x) = 232, < b, x >y, and ZZ[b,]] [[y.]| < oo
(see [8]). The nuclear norm of B is given by

v(B) = inf {232 ||5,1] ||y,I] | the {b,} and {y,}
satisfy the properties above}.

If B is a continuous linear map, we will use g (B) to denote the
operator norm of B.

A locally convex space E is said to be a nuclear space if for each
Ueny (E) there is a ¥V en(E), V c U, such that the canonical map
from E, into E, v is nuclear, where E, is the completion of E
(see [9]). A locally convex space E is said to be a Schwartz space if
for each U ey (E) there is a V en(E), V c U, such that the cano-
nical map from Ey into Ey is compact (see [10]).

§ 2. DriacoNAL Maps

Throughout this section we assume E and F are normed spaces
with 1 <7 < co. Characterizations of those diagonal maps from
I {E} into I'{F} which are nuclear and those which are precompact
are presented. These characterizations are those expected from the
comparable results in 7 (see [11] and [1]).

2.1. PropositioN: A diagonal map T from /" {E} into " {F} is nu-

clear if and only if for each 7, T,. is a nuclear and X2, v (T;) < oo,
where v is the nuclear norm of maps from E to F. Also, the nuclear

norm of T, »(T), is given by X2, (T)).
Proor: We first assume T is nuclear. Hence T has the form

T(x) = m1 <% a>y"
for some {a" c ("{E})’ and some {y% c I'{F} with 272, ||a"||,
[l3*]], << oo. (As before 1jr+ 1/r'=1, for 1 <7 < o, and 7' = oo,
if » = 1). Since (I {E}) = I"{E"}, each af is in E’. Using the nota-

tion of § 1 we have

Ti(x) =T (xe)) = 232 < 56, a" > y" = Zgoy < x;, ai > y"e,
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Hence
T, (%) = 2021 < x;, a4 > i,
with
2 lad e lyi e < Ze2qllar]), 11yl < eo.

Thus each T is nuclear.
From the definition » (T,) < 202,14} ||z ||vi ||. Thus

22w (T) < 22 252 |ad|le llyi |l s =
= 22 22 ad e 19E e < 2521 llat|l 1™, < oo,

using Holder’s inequality to obtain the second inequality. This shows
the necessity of the condition and also yields 272, v (T;) < v (7).

We now assume each 7 is nuclear with X2, v (T,) < . From
our assumption each 7, has the form T (x,) = 2,2, < 4}, x; > ¥i,
where {&;} € E', {y/y € F, and 2,2, ||a} ||z |13} |7 < . Let {a*} and
{y™ be the elements of w (E’) and w (F) given by a" = (a;), y* = (y7).
This yields T (x) = 2,2 < a*é, x > y*¢', with

ZZilla el |y ell, = ZaZollad |z |19 |1r < oo.

Hence T¢ is nuclear with » (T%) < v (T,).

Since T"W = X;_; T%, we have T" nuclear. For n < m, v (T"™ —
—TW) <X, 1v(T,). Thus {T™} is a Cauchy sequence in the
normed space of nuclear maps from [7{E} into I7{F}. Clearly
lim 7" (x) = T (x) in the norm of I {F},for each x €/"{E}. Hence

7#—> 00

by 3.1.3 of [8], T is nuclear from /* {E} into " {F}, with T = lim 7"

7n—>00

in the nuclear norm. Therefore v(7T) < X721 v(T) < 221 v (T).

2.2 Remark: If E and F are Banach spaces and either E’ or F has
the approximation property, then it follows from [4], page 158, and
2.1, that the space of diagonal nuclear maps from I7{E} into I’ {F}

is just {E'® F), where & denotes the projective tensor product.

2.3 ProprosrrionN: A diagonal map T from I {E} into I"{F} is pre-
compact if and only if each T; is precompact and lim f(7T;) = 0.

Also, B(T) =sup B(Ty) |1 =1, 2,...}.
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Proor: We first suppose that T is precompact. Let By denote
the unit ball of E and let By denote the unit ball of /7 {E}. Our
assumtion is that T (By(gy) is precompact in I’ {F}. Thus for fixed 7,
{(T (x)) ¢ | x; € B} is precompact in F. This verifies that each T; is
precompact.

Let ¢ > 0 be given. For each ¢ let 2z, € By with (7)) <
T, (z)|lr + e The set {T (z¢') |7 =1, 2, ...} is precompact in I {F}.
Hence there is a finite set {y!, ¥2, ..., y™ c I {F} with the property
that for each 7 there is a j with || T (z¢') — 37| < &. Since 7 << o,
there is an integer 7y with || yf,|| < v, each j =1, 2,..,m, and each
#n > . Finally for # > #n,

ﬂ(Tn) < ”Tn(‘zn)”b + € S ||y:¢HP + HT(ZB") _yilllv‘ + e < Je

Conversely, suppose each T is precompact with lim g(T}) = 0.

Thus T* is precompact and T™ is precompact from I’ {E} into I {F}.
From the definitions

BT — T™) = sup {(Z2st || T (@)I1) | 5 € 4By, 1 6l, < 1)
< sup (Z2e1 (B () 12117 | Nlx]l, < 1
<sup (B(T) i =n+ 1.

Since {#(T;)} converges to 0, it follows that {I™} converges to T
with respect to the § norm. Thus T is precompact.

The method used in the previous paragraph also shows that
B(T) <sup {B(T,)|7=1,2,..}. The reverse inequality is clear.

2.4 ReEMARK: If E and F are Banach spaces and either E’ or F
has the approximation property, then from [4, page 168] or [9,
page 114] and 2.3, we may conclude that the Space of dlagonal com-

pact maps of /¥ {E} into I" {F} is just ¢q {E’ (X) Fy, where (X) denotes
the bi-equicontinuous tensor topology.

§ 3. ELEcHELON Sracks Ovir E

After defining echelon spaces over E we will characterize those
which are nuclear spaces and those which are Schwartz spaces.
Throughout this section E is a Jocally convex space,
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3.1 DEerFINITION: ILet 1 <7 < o and let {T% be a sequence of
diagonal maps from I {E} into I/ {E} satisfying for each 7 and k:

i) Ti:E - E is a linear homeomorphism.

ii) Tit'(U)c T (U), for each U ey (E), 5 (E) some zero neigh-
borhood base for E.
Such a sequence of maps will be called a sequence of echelon type.

3.2 LemmA: If {T%} is of echelon type, then T*+! (I*{E}) c T* (I{E}),
for each k.

Proor: Let #(E) be a fundamental system of zero neighborhoods
satisfying (ii) of 3.1. Given U ey (E) and ¢ and % arbitrary, Pr* )
is a continuous semi-norm on E. It is straightforward to check that
pT:_c(U) (%;) = pu ((T:F)~1 (x;)), for x; e E. Thus x € w (E) is in T* (I {E})
if and only if 2521 (p* 1) (%;))” < oo, for each U € 5 (E). Property (i),
of 3.1, yields prn(U)‘(x,.) > préw) (%;), for each x; € E. The result
easily follows.

For {T* a sequence of echelon type we have T* (I’ {E}) a vector
sequence space in o (E), for each k. Hence N, T* (I {E}) is a vector
sequence space which we shall call an echelon space over E, and de-
note by S (E).

We can view S (E) as the kernel of the spaces 7% (I"{E}). We give
each T*(I" {E}) the topology causing T* (I {E}) and I'{E} to be linearly
homeomorphic under 7% Thus S (E) can be assigned the kernel-to-
pology determined by the topology given to T* (I’ {E}). Using [6],
page 226, and the inclusion given in 3.2, a fundamental system of
zero neighborhoods for the kernel-topology on S (E) is given by all
sets of the form S (E)n T*(Wy), where U en(E), k is a natural
number, and

Wy = g el {E} | (22 (po @) < 13,

For the remainder of the paper S (E) will be understood to have this
topology.

To simplify notation we shall denote by S, the normed space
S (E)aewy asay, for Uen(E).

3.3 LeMMa: Suppose 1 <7 < oo and S(E) is an echelon space
over E. The completion of S, ;; is isometric to I"{Ey}, where Ey is
the completion of Ey.
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Proor: Some details of this proof are omitted, but in each case the
details are straightforward.

Let u denote the quotient map of E onto Ey, with ¢ denoting the
gauge of U on E. Let p denote the gauge of 7% (W) nS (E) on S (E)
with G denoting p~1({0}). Define ¥': S, , -~ F{Ey} by P(x+G) =
= (uo (Tf )71 (x,));. W is clearly linear and we will show that ¥ is
an isometry.

For x + G €Sy, let ||x 4 G|| denote the norm of x + G in S, .
By definition || 4+ G|| =1inf {p (x + &) |g €G}. For y el'{E}, let
||¥]|v denote the norm of (u(y;)); in V/{Ey}. By definition ||y||y =
= (272 <inf {g(y; + 1) |t €g~1({0})} >")'". Given g € G, we have
px+8) =pw, (TH 1 (x+8) =(ZZ: (g (T) 1@ = (TH 1 (®)]]o,
the second equality following since ¢ ((T7)~1(g,)) = 0, for g eG.
Thus ||z + G| = [[(T%) ™1 () |]o.

For the reverse inequality let 0 << ¢ << 1 be given. By the defi-
nitions of S, ; and I'{E}, there is an %, for which ||x —x" |- G|| < e.
Also, for each 4, I <1 < g, there is a ¢ in ¢~1({0}) with ¢ ((TF)~1(x;)+
+t) — (e/21) < norm of wu((T7)~! (%)) in Ey. Define z = (z) by
2= (TH~1(%) + ¢, 1 <i<my, and z; = 0 otherwise. Then T* (z) +
+ G = x") 4 G. Using the Minkowski inequality for the last of the
following inequalities, we have

2+ Gll < 12" + Gl + [lx — 4 + G|| < ||T* () + Gl + ¢ <
e+ (Z21 (g @) < e+ &+ (TH 7 (%) llo-

The arbitrariness of ¢ gives the desired inequality.

It is easy to check that I"{E} is isometric to a dense subspace of
I {Ey}. The lemma will be proved if we can show that ¥ (S;,v) is
dense in I"{Ey}. Let w = (w,) € ¢ (Ey). Then w; = 0 4 ¢~1({0}) for
each ¢ > n,, some 7y, and w, =y, + ¢~ 1 ({0}) for 1 <7 < ny, with
y; € E. Define z = (z;) by 2z, =1y;, for 1 <7 <, and 2z, = 0 other-
wise. Then T*(2) 4+ G €S,y and ¥ (T*(2) + G) = w. The denseness
of p(Ey) in I'{Ey} completes the proof.

We can now give the characterizations announced at the begin-
ning of the section. -

If % is an inteegr and U € 5 (E), let Tg_gggote the linear map from
Ey into ETI:(U) induced by T}, and let (T7)~! denote the linear map
from E‘wa) into Ey induced by (TF)-1.
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3.4 THEOREM: Suppose 1 <7 < o and let S(E) = N,T*("{E})
be an echelon space over E. Then S (E) is a nuclear space if and only
if there is an # (E) so that given & and U e (E), thereisajand a

V en(E) for which (ﬁjl o (T) is a nuclear map from E, into Ey,
for each 7, and

S~

T2 (TH 1o (Th) < o,
where » is the nuclear norm for maps of E, into Ey,.

Proor: Iet % and ; be integers with j > %, and let U and V be ele-
ments of  (E) with ¥V c U. Let %7 and P*, respectively, denote the
isometry of S;p, into l’{fy} and the isometry of S, , into l’{fu}
described in the proof of 3.3. The following diagram then commutes:

S;v canonical Siu
l[ wi map v k{
TR =1, (Ti
rE,y 7@ g

Thus from 3.3 and the defintion of a nuclear space, the space S (E)
is nuclear if and only if (_’Z‘l)"vi ° (T7) is a nuclear map from riEy)
into I {bfu}. The theorem thus follows from 2.1.

3.5 THEOREM: Suppose 1 <7 < o and let S(E) = N,T*('{E})
an echelon space over E. Then S (E) is a Schwartz space if and only
be if there is an % (E) so that given 2 and U e (E), there is a j

a and V ey (E) for which (TH‘/1 o (T%) is a compact map from Ey

to EU, for each ¢, and

tim 8 ((T3) 1 (7)) = 0,

i—>o00
where § is the operator norm for maps from E, into Ey.

Proor: The proof is similar to 3.4 using 2.3 instead of 2.1 for the
final conclusion.

3.6 REMARK: Let S (E) be an echelon space on E. Since each T is
a linear homeomorphism of E into E, the collection (T4 U)|k=1,2,..,



A Generalization of Echelon Spaces 147

and U ey (L)} forms a zero neighborhood base for E. If & and
U en(E) are given, then for j > % and Ve U, V ey (E), it makes

sense to speak of the canonical map of ETI;(V) into ﬁ’rf;(u). This map
is of the form (T%)o (T§)~14(T%) s (T})~1. The composition of con-
tinuous maps and a nuclear (compact) map results in a nuclear

(compact) map. Thus using 3.4 (3.5) we note that E is a nu-
clear (Schwartz) space if S (E) is a nuclear (Schwartz) space.

§ 4. EXAMPLES, AND APPLICATION TO A{E}

In this section we show the existence of echelon spaces over E by
giving some examples. These examples and the conclusions of § 3
provide knowledge about 1 {E}.

4.1 ExampLEs: 1. Let E be a locally convex space with {f,} a
sequence of linear homeomorphisms of E into E. Let {a*} be a se-
quence of sequences of real numbers with 0 < af < ai*!, for each &
and #n. Define {T% by T, = (1/a})f,. Then S (E) = n,T* (" {E}) is
an echelon space over E.

Proor: We need only check that {T% is a sequence of echelon type.
Clearly each T is a linear homeomorphism. For U a zero neighbor-
hood of E, Tit' (U) = (1/ai*") £, (U) € (1/a) f, (U) = T% (V).

2. Let {T% be as in 1. and let E be a nuclear space with

IR aylaytt < oo, for each k. Then S(E) = N,T*("{E}) is a nu-
clear space.

Proor: If U eq(E), then by the nuclearity of E thereis a V e 5 (E),
V c U, with the canonical map ¥': E;, - Ey a nuclear map. By defini-

tion (Th)~1o(T5)=(ak|al) ¥, and hence »((Th)~10(T%)) = (ak/al) v (¥).
Thus for j > k, the property of 3.4 holds.

3. Let {T®% be as in 1., and let E be a Schwartz space with
lim af/ay™ = 0, for each k. Then S (E) = N, T* ( {E}) is a Schwartz

7—> 00

space.
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PrOOF: Similar to 2.

Let 2 be a normal sequence space over the complex or real field.
Suppose 4 has the topology 7, (4% 1) (see [6]). Let E be a locally
convex space. By 1{E} we mean {x € w (E)|(py (¥,)), € 4, for each
Uen(E). A{E} is topologized by the semi-norms ¢ ((py (%,)).),
where g ranges over the continuous semi-norms of A.

Suppose A is the echelon space N, (1/a*) /" (see [2]) and {T% is
given as in 4.1 with f, the identity map for each #. Then A{E} and
S (E) are equal both algebraically and topologically. The algebraic
equality follows since x is in A{E} if and only if (py (x,)), € 4, for
and each U ey (E), if and only if () py (%,)), € ¥, for each & and each
U, if and only if (a}%,), € I’ {E}, for each k. However, (arx,), =
= (T%~1(x). Writing explicitly a fundamental zero neighborhood
for S (E) and a fundamental zero neighborhood for A{E} will show the
topological equality. Such a neighborhood in S (E) is {x | (T%)~! (x) =
— (ak x,), satisfies (252, (py (ah %,))") " < 1, for some U €7 (E)} (recall
the discussion after 3.3). A zero neighborhood in A{E}is {*| (a} (pu (%,)),)
is in the unit ball of / for some U €5 (E)}.

Using 3.4, 3.5, and 4.1 we have established :

4.3 ProrosiioN: If 1is a nuclear (Schwartz) echelon space of
the form 4 =N, (1/a*) ¥ and E is a nuclear (Schwartz) space, then
A{E} is a nuclear (Schwartz) space.

4.4 REMARK: As stated in the introduction the motivation was to
obtain theorems which were generalizations of theorems for echelon
spaces. This is the only reason we consider only a sequence of func-
tions in 3.1 and 3.2 Each of the theorems and examples are valid
for the case {I% is a net of diagonal functions.
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