

SOME POLYNOMIALS RELATED TO THE ULTRA-
SPHERICAL POLYNOMIALS (*)

BY

L. CARLITZ

1. INTRODUCTION. In a previous paper [4] the writer has defined a set of polynomials $A_n^{(\lambda)}(x)$ such that

$$(1.1) \quad \sum_{r=0}^n A_r^{(\lambda)}(x) C_{n-r}^{(\lambda+r)}(x) = \begin{cases} 1 & (n = 0) \\ 0 & (n \geq 1), \end{cases}$$

where $C_n^{(\lambda)}(x)$ is the ultraspherical polynomial defined by

$$(1.2) \quad (1 - 2xt + t^2)^{-\lambda} = \sum_{n=0}^{\infty} C_n^{(\lambda)}(x) t^n.$$

It was shown that

$$(1.3) \quad A_n^{(\lambda)}(x) = (-1)^n \sum_{2r \leq n} \frac{(\lambda)_n (2x)^{n-2r}}{r!(\lambda+1)_r (n-2r)!},$$

from which it follows that

$$(1.4) \quad A_n^{(\lambda)}(x) = \frac{\lambda}{\lambda+n} C_n^{(-\lambda-n)}(x).$$

Making use of $A_n^{(\lambda)}(x)$ the inverses of a number of formulas involving $C_n^{(\lambda)}(x)$ were derived.

In the present paper we obtain a number of additional formulas involving $A_n^{(\lambda)}(x)$.

(*) Supported in part by National Science Foundation grant G - 9425.

2. PRELIMINARIES. It will be convenient to recall a number of formulas from [4]. In the first place (1.1) is a special case of

$$(2.1) \quad C_n^{(\mu-\lambda)}(x) = \sum_{r=0}^n A_r^{(\lambda)}(x) C_{n-r}^{(\mu+r)}(x),$$

where λ, μ are arbitrary. Next we have the generating relation

$$(2.2) \quad (1 - 2xt + t^2)^\lambda = \sum_{n=0}^{\infty} z^n A_n^{(\lambda)}(x),$$

where

$$(2.3) \quad z = \frac{t}{1 - 2xt + t^2};$$

also

$$(2.4) \quad \sum_{n=0}^{\infty} t^n A_n^{(\lambda)}(x) = (1 + 2xt)^{-\lambda} F \left[\frac{\lambda}{2}, \frac{\lambda+1}{2}; \lambda+1; \frac{4t^2}{(1+2xt)^2} \right],$$

where F denotes the hypergeometric function. It is easily verified that (2.4) is equivalent to (1.3). Another generating relation is given by

$$(2.5) \quad \sum_{n=0}^{\infty} \frac{t^n}{(\lambda)_n} A_n^{(\lambda)}(x) = \Gamma(\lambda+1) t^{-\lambda} e^{-2xt} I_{\lambda}(2t).$$

3. SOME EXPANSION FORMULAS. We show first that

$$(3.1) \quad (2x)^n = \sum_{2s \leq n} (-1)^{n-s} \frac{n!}{s! (\lambda+1)_s (\lambda+s)_{n-2s}} A_{n-2s}^{(\lambda+s)}(x).$$

Indeed, using (1.3), we have

$$\begin{aligned} & \sum_{2s \leq n} (-1)^{n-s} \frac{n!}{s! (\lambda+1)_s (\lambda+s)_{n-2s}} A_{n-2s}^{(\lambda+s)}(x) \\ &= \sum_{2s \leq n} (-1)^s \frac{n!}{s! (\lambda+1)_s} \sum_{2r \leq n-2s} \frac{(2x)^{n-2r-2s}}{r! (\lambda+s-1)_r (n-2r-2s)!} \\ &= \sum_{2k \leq n} \frac{n! (2x)^{n-2k}}{k! (\lambda+1)_k (n-2k)!} \sum_{s=0}^k (-1)^s \binom{k}{s}. \end{aligned}$$

Thus (3.1) follows at once.

Next using (1.3) and (3.1) we get

$$\begin{aligned}
 A_n^{(\lambda)}(xy) &= (-1)^n \sum_{2r \leq n} \frac{(\lambda)_n y^{n-2r}}{r! (\lambda+1)_r} \frac{(2x)^{n-2r}}{(n-2r)!} \\
 &= \sum_{2r \leq n} \frac{(\lambda)_n y^{n-2r}}{r! (\lambda+1)_r} \sum_{2s \leq n-2r} (-1)^s \frac{A_{n-2r-2s}^{(\mu+r+s)}(x)}{s! (\mu+r+1)_s (\mu+r+s)_{n-2r-2s}} \\
 &= \sum_{2k \leq n} \frac{(\lambda)_n A_{n-2k}^{(\mu+k)}}{k! (\mu+1)_k (\mu+k)_{n-2k}} \sum_{r=0}^k (-1)^{k-r} \binom{k}{r} \frac{(\mu+1)_r}{(\lambda+1)_r} y^{n-2r}.
 \end{aligned}$$

We have therefore

$$(3.2) \quad A_n^{(\lambda)}(xy) = \sum_{2k \leq n} (-1)^k \frac{(\lambda)_n y^n A_{n-2k}^{(\mu+k)}}{k! (\mu+1)_k (\mu+k)_{n-2k}} \cdot F(-k, \mu+1; \lambda+1; y^{-2}).$$

In particular for $\lambda = \mu$, (3.2) becomes

$$(3.3) \quad A_n^{(\lambda)}(xy) = \sum_{2k \leq n} (-1)^k \frac{(\lambda)_n y^{n-2k} (y^2 - 1)^k}{k! (\lambda+1)_k (\lambda+k)_{n-2k}} A_{n-2k}^{(\lambda+k)}(x),$$

while for $y = 1$ we get

$$(3.4) \quad A_n^{(\lambda)}(x) = \sum_{2k \leq n} (-1)^k \frac{(\lambda)_n (\lambda - \mu)_k}{k! (\lambda+1)_k (\mu+1)_k (\mu+k)_{n-2k}} A_{n-2k}^{\mu+k}(x).$$

We remark that (3.1) and (2.5) yield

$$\begin{aligned}
 e^{-2xt} &= \sum_{n=0}^{\infty} t^n \sum_{2s \leq n} (-1)^s \frac{A_{n-2s}^{(\lambda+s)}(x)}{s! (\lambda+1)_s (\lambda+s)_{n-2s}} \\
 &= \sum_{s=0}^{\infty} (-1)^s \frac{t^{2s}}{s! (\lambda+1)_s} \sum_{n=0}^{\infty} \frac{t^n}{(\lambda+s)_n} A_n^{(\lambda+s)}(x) \\
 &= \sum_{s=0}^{\infty} (-1)^s \frac{t^{2s}}{s! (\lambda+1)_s} \cdot \Gamma(\lambda + s + 1) t^{-\lambda-s} e^{-2xt} I_{\lambda+s}(2t)
 \end{aligned}$$

$$= \Gamma(\lambda + 1) \sum_{s=0}^{\infty} (-1)^s \frac{t^{s-\lambda}}{s!} I_{\lambda+s}(2t) e^{-2xt},$$

so that

$$(3.5) \quad \frac{t^\lambda}{\Gamma(\lambda + 1)} = \sum_{s=0}^{\infty} (-1)^s \frac{t^s}{s!} I_{\lambda+s}(2t).$$

Similarly from (3.2)

$$\begin{aligned} \sum_{n=0}^{\infty} \frac{t^n}{(\lambda)_n} A^{(\lambda)}(xy) &= \sum_{k=0}^{\infty} (-1)^k y^{2k} \frac{F(-k, \mu+1; \lambda+1; y^{-2})}{k! (\mu+1)_k} \times \\ &\quad \times \sum_{n=0}^{\infty} \frac{(yt)^n}{(\mu+k)_n} A^{(\mu+k)}(x). \end{aligned}$$

Using (2.5) this becomes

$$\begin{aligned} \Gamma(\lambda + 1) t^{-\lambda} e^{-2xyt} I_{\lambda}(2t) &= \sum_{k=0}^{\infty} (-1)^k (yt)^{2k} \frac{F(-k, \mu+1; \lambda+1; y^{-2})}{k! (\mu+1)_k} \\ &\quad \cdot \Gamma(\mu+k+1) (ty)^{-\mu-k} e^{-2xyt} I_{\mu+k}(2yt), \end{aligned}$$

so that

$$(3.6) \quad \frac{\Gamma(\lambda+1)}{\Gamma(\mu+1)} t^{\mu-\lambda} I_{\lambda}(2t) = y^{-\mu} \sum_{k=0}^{\infty} (-1)^k \frac{(yt)^k}{k!} F(-k, \mu+1; \lambda+1; y^{-2}) I_{\mu+k}(2yt).$$

The formula (3.5) is well known; also the case $\lambda = \mu$ of (3.6) is familiar [6, p. 142].

4. OTHER EXPANSION FORMULAS. Analogous to (3.1) we have a second expansion

$$(4.1) \quad (2x)^n = (-1)^n \frac{n!}{(\lambda)_n} \sum_{2r \leq n} (-1)^r \frac{(\lambda)_r}{r!} A_{n-2r}^{(\lambda+2r)}(x),$$

which can be verified using (1.3). Note that (4.1) is equivalent to

$$e^{-2xt} = \sum_{r=0}^{\infty} (-1)^r \frac{t^{2r}}{r! (\lambda+r)_r} \sum_{n=0}^{\infty} \frac{t^n}{(\lambda+2r)_n} A_n^{(\lambda+2r)}(x)$$

$$= \sum_{r=0}^{\infty} (-1)^r \frac{t^{2r}}{r! (\lambda+r)} \cdot \Gamma(\lambda+2r+1) t^{-\lambda-2r} e^{-2xt} I_{\lambda+2r}(2t),$$

that is, to the familiar expansion [6, p. 138]

$$t^{\lambda} = \sum_{r=0}^{\infty} \frac{(\lambda+2r) \Gamma(\lambda+r)}{r!} I_{\lambda+2r}(2t).$$

Using (4.1) and (1.3) we get

$$\begin{aligned} A_n^{(\lambda)}(xy) &= \sum_{2r \leq n} \frac{(\lambda)_n y^{n-2r}}{r! (\lambda+1)_r (\mu+2r)_{n-2r}} \\ &\quad \cdot \sum_{2s \leq n-2r} (-1)^s \frac{(\mu+2r)_s}{s!} A_{n-2r-2s}^{(\mu+2r+2s)}(x) \\ &= \frac{(\lambda)_n}{(\lambda)_n} \sum_{2k \leq n} \frac{1}{k!} A_{n-2k}^{(\mu+2k)}(x) \sum_{r=0}^k (-1)^{k-r} \binom{k}{r} \frac{(\mu)_k + r}{(\lambda+1)_r} y^{n-2r}, \end{aligned}$$

so that

$$\begin{aligned} (4.2) \quad A_n^{(\lambda)}(xy) &= \frac{(\lambda)_n}{(\mu)_n} y^n \sum_{2k \leq n} (-1)^k \frac{(\mu)_k}{k!} A_{n-2k}^{(\mu+2k)}(x) \\ &\quad \cdot F(-k, \mu+k; \lambda+1; y^{-2}). \end{aligned}$$

In particular for $\lambda = \mu$, (4.2) becomes

$$\begin{aligned} (4.3) \quad A_n^{(\lambda)}(xy) &= y^n \sum_{2k \leq n} (-1)^k \frac{(\lambda)_k}{k!} A_{n-2k}^{(\lambda+2k)}(x) \\ &\quad \cdot F(-k, \lambda+k; \lambda+1; y^{-2}). \end{aligned}$$

Since

$$F(-k, \mu+k; \lambda+1; 1) = \frac{(\lambda-\mu-k+1)_k}{(\lambda+1)_k} = (-1)^k \frac{(\mu-\lambda)_k}{(\lambda+1)_k},$$

(4.2) reduces for $y = 1$ to

$$(4.4) \quad A_n^{(\lambda)}(x) = \frac{(\lambda)_n}{(\mu)_n} \sum_{2k \leq n} \frac{(\mu)_k (\mu-\lambda)_k}{k! (\lambda+1)_k} A_{n-2k}^{(\mu+2k)}(x).$$

Making use of (1.4), the formulas (4.1), (4.2), (4.3), (4.4) can also be expressed compactly in terms of $C_n^{(\lambda)}(x)$.

We remark that (4.2) is equivalent to the familiar expansion [6, p. 140]

$$\begin{aligned} & \Gamma(\lambda + 1) y^\mu t^{\mu-\lambda} I_\lambda(2t) \\ &= \sum_{n=0}^{\infty} (-1)^n \frac{(\mu + 2n) \Gamma(\mu + n)}{n!} I_{\mu+2n}(2t) \cdot F(-n, \mu + n; \lambda + 1; y^{-2}). \end{aligned}$$

5. GENERATING FUNCTIONS. We now consider some extensions of (2.4). Using (1.3) we get

$$\begin{aligned} \sum_{n=0}^{\infty} \frac{(\mu)_n}{(\lambda)_n} t^n A_n^{(\lambda)}(x) &= \sum_{n=0}^{\infty} (-1)^n t^n \sum_{2r \leq n} \frac{(2x)^{n-2r}}{r! (\lambda+1)_r (n-2r)!} \\ &= \sum_{r=0}^{\infty} \frac{(\mu)_{2r} t^{2r}}{r! (\lambda+1)_r} \sum_{n=0}^{\infty} (-1)^n \frac{(\mu+2r)_n}{n!} (2xt)^n \\ &= \sum_{r=0}^{\infty} \frac{(\mu)_{2r}}{r! (\lambda+1)_r} t^{2r} (1+2xt)^{-\mu-2r}. \end{aligned}$$

We have therefore

$$\begin{aligned} (5.1) \quad & \sum_{n=0}^{\infty} \frac{(\mu)_n}{(\lambda)_n} t^n A_n^{(\lambda)}(x) \\ &= (1+2xt)^{-\mu} F\left[\frac{\mu}{2}, \frac{\mu+1}{2}; \lambda+1; \frac{4t^2}{(1+2xt)^2}\right]. \end{aligned}$$

In particular for $\mu = 2\lambda + 1$, the right side becomes

$$(1+2xt)^{-2\lambda+1} \left\{ 1 - \frac{4t^2}{(1+2xt)^2} \right\}^{-\lambda-\frac{1}{2}} = \{1+4xt+4(x^2-1)t^2\}^{-\lambda-\frac{1}{2}},$$

so that

$$(5.2) \quad \sum_{n=0}^{\infty} \frac{(2\lambda+1)_n}{(\lambda)_n} t^n A_n^{(\lambda)}(x) = \{1+4xt+4(x^2-1)t^2\}^{-\lambda-\frac{1}{2}}.$$

Similarly for $\mu = 2\lambda + 2$, (5.1) reduces to

$$(5.3) \quad \sum_{n=0}^{\infty} \frac{(2\lambda+2)_n}{(\lambda)_n} t^n A_n^{(\lambda)}(x) = (1+2xt) \{1+4xt+4(x^2-1)t^2\}^{-\lambda-\frac{3}{2}}.$$

From (5.2) we evidently get

$$(5.4) \quad \frac{(2\lambda+1)_n}{(\lambda)_n} A_n^{(\lambda)}(x) = (-1)^n 2^n (x^2 - 1)^{\frac{n}{2}} C_n^{[\lambda + \frac{1}{2}]} \left(\frac{x}{(x^2 - 1)^{\frac{1}{2}}} \right),$$

while (5.3) implies an equivalent result, as can be verified without much difficulty.

When $\lambda = \mu$, it is evident that (5.1) reduces to (2.4). Also if we replace t by t/μ and let $\mu \rightarrow \infty$ then formally (5.1) reduces to (2.5).

6. THE POLYNOMIAL $S_n^{(\lambda, \mu)}(y, x)$. We now consider

$$(6.1) \quad S_n = S_n^{(\lambda, \mu)}(y, x) = \sum_{r=0}^n C_r^{(\lambda)}(y) A_{n-r}^{(\mu+r)}(x).$$

Then if

$$(6.2) \quad z = \frac{t}{1 - 2xt + t^2},$$

it follows from (2.2) and (2.3) that

$$\begin{aligned} \sum_{n=0}^{\infty} S_n z^n &= \sum_{r=0}^{\infty} C_r^{(\lambda)}(y) z^r \sum_{n=0}^{\infty} A_{n-r}^{(\mu+r)}(x) z^n \\ &= \sum_{r=0}^{\infty} C_r^{(\lambda)}(y) z^r (1 - 2xt + t^2)^{\mu+r} \\ &= (1 - 2xt + t^2)^{\mu} \sum_{r=0}^{\infty} C_r^{(\lambda)}(y) t^r \\ &= (1 - 2xt + t^2)^{\mu} (1 - 2yt + t^2)^{-\lambda}, \end{aligned}$$

so that

$$(6.3) \quad \sum_{n=0}^{\infty} S_n^{(\lambda, \mu)}(y, x) z^n = (1 - 2xt + t^2)^{\mu} (1 - 2yt + t^2)^{-\lambda}.$$

In particular, when $x = y$, since

$$(1 - 2xt + t^2)^{\mu-\lambda} = \sum_{n=0}^{\infty} z^n A_n^{(\mu-\lambda)}(x),$$

it follows that

$$(6.4) \quad S_n^{(\lambda, \mu)}(x, x) = A_n^{(\mu-\lambda)}(x).$$

We show next that

$$(6.5) \quad S_n^{(\lambda, \lambda)}(y, x) = \frac{2^n (\lambda)_n}{n!} (y - x)^n.$$

This can be proved rapidly by means of the degenerate addition theorem [6, p. 369] :

$$e^{2yt} = \Gamma(\lambda) \sum_{r=0}^{\infty} (\lambda + r) \frac{I_{\lambda+r}(2t)}{t} C_r^{(\lambda)}(y).$$

Then, employing (2.5), we have

$$\begin{aligned} e^{2(y-x)t} &= \sum_{r=0}^{\infty} \frac{t^r}{(\lambda)_r} \sum_{s=0}^{\infty} A_s^{(\lambda+r)}(x) \frac{t^s}{(\lambda+r)_s} C_r^{(\lambda)}(y) \\ &= \sum_{n=0}^{\infty} \frac{t^n}{(\lambda)_n} \sum_{r=0}^n C_r^{(\lambda)}(y) A_{n-r}^{(\lambda+r)}(x) \\ &= \sum_{n=0}^{\infty} \frac{t^n}{(\lambda)_n} S_n^{(\lambda, \lambda)}(y, x), \end{aligned}$$

which is evidently equivalent to (6.5).

If we take $\lambda = \mu$ in (6.3) and compare with (6.5) it is clear that

$$(6.6) \quad (1 - 2xt + t^2)^{\lambda} (1 - 2yt + t^2)^{-\lambda} = \{1 - 2(y - x)z\}^{-\lambda},$$

where z is defined by (6.2). If now we rewrite (6.3) as

$$\begin{aligned} \sum_{n=0}^{\infty} S_n^{(\lambda, \mu)}(y, x) z^n &= (1 - 2xt + t^2)^{\mu-\lambda} \cdot (1 - 2xt + t^2)^{\lambda} (1 - 2yt + t^2)^{-\lambda} \\ &= \sum_{r=0}^{\infty} A_r^{(\mu-\lambda)}(x) z^r \sum_{s=0}^{\infty} \frac{(\lambda)_s}{s!} 2^s (y - x)^s z^s, \end{aligned}$$

it follows at once that

$$(6.7) \quad S_n^{(\lambda, \mu)}(y, x) = \sum_{s=0}^n \frac{(\lambda)_s}{s!} 2^s (y - x)^s A_{n-s}^{(\mu-\lambda)}(x).$$

This formula evidently includes both (6.4) and (6.5).

We note that (6.3) yields

$$(6.8) \quad \sum_{r=0}^n S_r^{(\lambda, \mu)}(y, x) S_{n-r}^{(\lambda', \mu')}(y, x) = S_n^{(\lambda+\lambda', \mu+\mu')}(y, x).$$

Also it can be shown that

$$(6.9) \quad \sum_{r=0}^n S_r^{(\lambda, \mu)}(y, x) S_{n-r}^{(\lambda'+r, \mu'+r)}(x, y) = S_n^{(\lambda'-\mu, \mu'-\lambda)}(x, y).$$

Indeed the left side of (6.9) is equal to

$$\begin{aligned} & \sum_{r+s+j+k=n} C_r^{(\lambda)}(y) A_s^{(\mu+r)}(x) C_j^{(\lambda'+r+s)}(x) A_k^{(\mu'+r+s+j)}(y) \\ &= \sum_{r+s+k=n} C_r^{(\lambda)}(y) C_s^{(\lambda'-\mu)}(x) A_k^{(\mu'+r+s)}(y) \\ &= \sum_{s=0} C_s^{(\lambda'-\mu)}(x) A_{n-s}^{(\mu'-\lambda+s)}(y) = S_n^{(\lambda'-\mu, \mu'-\lambda)}(x, y), \end{aligned}$$

where we have used (2.1) and (6.4).

7. THE POLYNOMIAL $T_n^{(\lambda, \mu)}(x, y)$. In the next place we put

$$(7.1) \quad T_n = T_n^{(\lambda, \mu)}(x, y) = \sum_{r=0}^n A_r^{(\lambda)}(x) C_{n-r}^{(\mu+r)}(y).$$

Then

$$\begin{aligned} \sum_{n=0}^{\infty} T_n t^n &= \sum_{r=0}^{\infty} A_r^{(\lambda)}(x) t^r \sum_{n=0}^{\infty} C_{n-r}^{(\mu+r)}(y) t^n \\ &= \sum_{r=0}^{\infty} A_r^{(\lambda)}(x) t^r (1 - 2yt + t^2)^{-\mu-r}. \end{aligned}$$

By (2.4)

$$\begin{aligned} & \sum_{r=0}^{\infty} A_r^{(\lambda)}(x) t^r (1 - 2yt + t^2)^{-\mu-r} \\ &= \left(1 + \frac{2xt}{1 - 2yt + t^2}\right)^{-\lambda} F\left[\frac{\lambda}{2}, \frac{\lambda+1}{2}; \lambda+1; \frac{4t^2}{(1 - 2(y-x)t + t^2)^2}\right], \end{aligned}$$

so that

$$\begin{aligned} \sum_{n=0}^{\infty} T_n t^n &= (1 - 2yt + t^2)^{\lambda-\mu} (1 - 2(y-x)t + t^2)^{-\lambda} \\ &\quad \cdot F\left[\frac{\lambda}{2}, \frac{\lambda+1}{2}; \lambda+1; \frac{4t^2}{(1 - 2(y-x)t + t^2)^2}\right] \end{aligned}$$

$$= \sum_{r=0}^{\infty} C_r^{(\mu-\lambda)}(y) t^r \sum_{s=0}^{\infty} \frac{(\lambda)_{2s}}{s! (\lambda+1)_s} t^{2s} \sum_{j=0}^{\infty} C_j^{(\lambda+2s)}(y-x) t^j.$$

It follows that

$$(7.2) \quad T_n^{(\lambda, \mu)}(x, y) = \sum_{r+2s+j=n} \frac{(\lambda)_{2s}}{s! (\lambda+1)_s} C_r^{(\mu-\lambda)}(y) C_j^{(\lambda+2s)}(y-x).$$

Comparing (7.1) with (2.1) it is clear that

$$(7.3) \quad T_n^{(\lambda, \mu)}(x, x) = C_n^{(\mu-\lambda)}(x).$$

Also, for $\lambda = \mu$, (7.2) reduces to

$$(7.4) \quad T_n^{(\lambda, \lambda)}(x, y) = \sum_{2s \leq n} \frac{(\lambda)_{2s}}{s! (\lambda+1)_s} C_{n-2s}^{(\lambda+2s)}(y-x).$$

On the other hand, by (1.4), we have

$$\begin{aligned} T_n^{(\lambda, \lambda)}(x, y) &= \sum_{r=0}^n \frac{\lambda}{\lambda+r} C_r^{(-\lambda-r)}(x) \frac{\lambda+r}{\lambda+n} A_{n-r}^{(-\lambda-n)}(y) \\ &= \frac{\lambda}{\lambda+n} \sum_{r=0}^n A_r^{(-\lambda-n)}(y) C_{n-r}^{(-\lambda-n+r)}(x) \\ &= \frac{\lambda}{\lambda+n} T_n^{(-\lambda-n, -\lambda-n)}(y, x) \end{aligned}$$

so that

$$(7.5) \quad T_n^{(\lambda, \lambda)}(x, y) = \frac{\lambda}{\lambda+n} T_n^{(-\lambda-n, -\lambda-n)}(y, x).$$

We notice also that

$$(7.6) \quad \sum_{r=0}^n T_r^{(\lambda, \mu)}(y, x) T_{n-r}^{(\lambda'+r, \mu'+r)}(x, y) = T_n^{(\lambda'-\mu, \mu'-\lambda)}(y, x).$$

The proof is similar to the proof of (6.9).

8. FORMULAS FOR THE PRODUCT $A_m^{(\lambda)}(x) A_n^{(\lambda)}(x)$. In the addition theorem for $I_\lambda(z)$:

$$(8.1) \quad \frac{I_\lambda(w)}{w^\lambda} = \frac{2^\lambda \Gamma(\lambda)}{(uv)^\lambda} \sum_{r=0}^{\infty} (-1)^r (\lambda+r) I_{\lambda+r}(u) I_{\lambda+r}(v) \cdot C_r^\lambda(\cos \Phi),$$

where

$$w = (u^2 + v^2 - 2uv \cos \Phi)^{\frac{1}{2}},$$

take $\Phi = \pi$. Since

$$C_r^{\lambda}(-1) = (-1)^r \frac{(2\lambda)_r}{r!},$$

(8.1) implies

$$\frac{I_{\lambda}(2(u+v))}{(u+v)^{\lambda}} = \frac{\Gamma(\lambda)}{(uv)^{\lambda}} \sum_{r=0}^{\infty} (\lambda+r) \frac{(2\lambda)_r}{r!} I_{\lambda+r}(2u) I_{\lambda+r}(2v).$$

Then using (2.5) we get

$$\begin{aligned} \sum_{n=0}^{\infty} \frac{A_n^{(\lambda)}(x)}{(\lambda)_n} (u+v)^n &= \frac{1}{\lambda} \sum_{r=0}^{\infty} \frac{(\lambda+r)(2\lambda)_r}{r!(\lambda+1)_r(\lambda+1)_r} (uv)^r \\ &\cdot \sum_{m=0}^{\infty} A_m^{(\lambda+r)}(x) \frac{u^m}{(\lambda+r)_m} \sum_{n=0}^{\infty} A_n^{(\lambda+r)}(x) \frac{v^n}{(\lambda+r)_n}. \end{aligned}$$

It follows that

$$(8.2) \quad \binom{m+n}{m} \frac{(\lambda)_m(\lambda)_n}{(\lambda)_{m+n}} A_{m+n}^{(\lambda)}(x) = \lambda \sum_{r=0}^{\min(m,n)} \frac{(2\lambda)_r}{r!(\lambda+r)} A_{m-r}^{(\lambda+r)}(x) A_{n-r}^{(\lambda+r)}(x).$$

In terms of $C_n^{(\lambda)}(x)$ (8.2) becomes

$$\begin{aligned} (8.3) \quad &\binom{m+n}{m} \frac{(\lambda)_{m+1}(\lambda)_{n+1}}{(\lambda)_{m+n+1}} C_{m+n}^{(-\lambda-m-n)}(x) \\ &= \sum_{r=0}^{\min(m,n)} \frac{(\lambda+r)(2\lambda)_r}{r!} C_{m-r}^{(-\lambda-m)}(x) C_{n-r}^{(-\lambda-n)}(x). \end{aligned}$$

Again, by formula (37) of [4]

$$I_{\lambda}(2u) I_{\lambda}(2v) = \sum_{r=0}^{\infty} \frac{(-1)^r}{\Gamma(\lambda+r+1)} \binom{2\lambda+2r}{r} \left(\frac{uv}{u+v} \right)^{\lambda+r} \cdot I_{\lambda+r}(2(u+v)).$$

It follows on applying (2.5) that

$$\begin{aligned} (8.4) \quad &\frac{A_m^{(\lambda)}(x) A_n^{(\lambda)}(x)}{(\lambda)_m(\lambda)_n} = \sum_{r=0}^{\min(m,n)} (-1)^r \frac{\lambda}{(\lambda+r)(\lambda+1)_r} \binom{2\lambda+2r}{r} \binom{m+n-2r}{m-r} \\ &\cdot \frac{A_{m+n-2r}^{(\lambda+r)}(x)}{(\lambda)_{m+n-r}}. \end{aligned}$$

It can be checked directly that (8.4) is indeed the inverse of (8.2).

In terms of $C_n^{(\lambda)}(x)$, (8.4) becomes

$$(8.5) \quad \begin{aligned} & \frac{C_m^{(-\lambda-m)}(x) C_m^{(-\lambda-n)}(x)}{(\lambda)_{m+1}(\lambda)_{n+1}} \\ &= \frac{1}{\lambda} \sum_{r=0}^{\min(m,n)} (-1)^r \frac{1}{(\lambda+1)_r} \binom{2\lambda+2r}{r} \binom{m+n-2r}{m-r} \frac{C_{m+n-2r}^{(-m-n-\lambda+r)}(x)}{(\lambda)_{m+n-r+1}}. \end{aligned}$$

We remark that (8.5) does not contain the formulas found by BAILEY [2] for the product of two associated LEGENDRE polynomials. Also (8.3) does not contain the inverse formula found by AL-SALAM [1].

9. SOME ADDITIONAL RESULTS. We conclude with some formulas of a different kind. For brevity put

$$(9.1) \quad \bar{A}_n^{(\lambda)}(x) = \frac{n!}{(\lambda)_n} A_n^{(\lambda)}(x).$$

Then by (1.3)

$$\begin{aligned} & \sum_{r=0}^n (-1)^{n-r} \binom{n}{r} u^r \bar{A}_r^{(\lambda)}(x) v^{n-r} \bar{A}_{n-r}^{(\mu)}(y) \\ &= \sum_{r=0}^n (-1)^r \binom{n}{r} u^r v^{n-r} \sum_{2s \leq r} \frac{r! (2x)^{r-2s}}{s! (\lambda+1)_s (r-2s)!} \\ & \quad \cdot \sum_{2j \leq n-r} \frac{(n-r)! (2y)^{n-r-2j}}{j! (\mu+1)_j (n-r-2j)!} \\ &= n! \sum_{2s+2j \leq n} \frac{u^{2s} v^{2j}}{s! j! (\lambda+1)_s (\mu+1)_j} \sum_{2s \leq r \leq n-2j} (-1)^r \frac{(2ux)^{r-2s} (2vy)^{n-r-2j}}{(r-2s)! (n-r-2j)!} \\ &= n! \sum_{2s+2j \leq n} \frac{2^{n-2s-2j} u^{2s} v^{2j} (vy - ux)^{n-2s-2j}}{s! j! (\lambda+1)_s (\mu+1)_j (n-2s-2j)!}. \end{aligned}$$

This may be written in the following form.

$$(9.2) \quad \begin{aligned} & (u \bar{A}^{(\lambda)}(x) - v \bar{A}^{(\mu)}(y))^n \\ &= n! \sum_{2k \leq n} \frac{2^{n-2k} (vy - ux)^{n-2k}}{k! (n-2k)!} \sum_{j=0}^k \binom{k}{j} \frac{u^{2k-2j} v^{2j}}{(\lambda+1)_{k-j} (\mu+1)_j}. \end{aligned}$$

In particular, for $u = y$, $v = x$, (9.2) reduces to

$$(9.3) \quad (y \bar{A}^{(\lambda)}(x) - x \bar{A}^{(\mu)}(y))^n = \begin{cases} 0 & (n \text{ odd}) \\ \frac{n! y^n}{m! (\lambda+1)_m} F(-m, -\lambda-m; \mu+1; \frac{x^2}{y^2}) & (n = 2m). \end{cases}$$

For $u = v = 1$, (9.2) becomes

$$(9.4) \quad (\bar{A}^{(\lambda)}(x) - \bar{A}^{(\mu)}(y))^n = n! \sum_{2k \leq n} \frac{2^{n-2k} (y-x)^{n-2k}}{k! (n-2k)!} \frac{(\lambda+\mu+k)_k}{(\lambda+1)_k (\mu+1)_k}$$

and in particular

$$(9.5) \quad (\bar{A}^{(\lambda)}(x) - \bar{A}^{(\mu)}(x))^n = \begin{cases} 0 & (n \text{ odd}) \\ \frac{n! (\lambda+\mu+m)_m}{m! (\lambda+1)_m (\mu+1)_m} & (n = 2m). \end{cases}$$

Formulas of a similar kind can be found for

$$(9.6) \quad \bar{C}_n^{(\lambda)}(x) = \frac{n!}{(2\lambda)_n} C_n^{(\lambda)}(x).$$

Making use of the formula

$$(9.7) \quad C_n^{(\lambda)}(x) = \sum_{2r \leq n} \frac{(2\lambda)_n x^{n-2r} (x^2-1)^r}{2^{2r} r! \left(\lambda + \frac{1}{2}\right)_r (n-2r)!}$$

we get

$$\begin{aligned} & \sum_{r=0}^n (-1)^{n-r} \binom{n}{r} u^r \bar{C}_r^{(\lambda)}(x) v^{n-r} C_{n-r}^{(\mu)}(y) \\ &= \sum_{r=0}^n (-1)^{n-r} \binom{n}{r} u^r v^{n-r} \sum_{2s \leq r} \frac{r! x^{r-2s} (x^2-1)^s}{2^{2s} s! \left(\lambda + \frac{1}{2}\right)_s (r-2s)!} \\ & \quad \cdot \sum_{2j \leq n-r} \frac{(n-r)! y^{n-r-2j} (y^2-1)^j}{2^{2j} j! \left(\mu + \frac{1}{2}\right)_j (n-r-2j)!} \\ &= n! \sum_{2s+2j \leq n} \frac{(x^2-1)^s (y^2-1)^j u^{2s} v^{2j}}{2^{2s+2j} s! j! \left(\lambda + \frac{1}{2}\right)_s \left(\mu + \frac{1}{2}\right)_j} \end{aligned}$$

$$\begin{aligned}
& \sum_{2s \leq r \leq n-2j} (-1)^s \frac{(ux)^{r-2s} (vy)^{n-r-2j}}{(r-2s)! (n-r-2j)!} \\
&= n! \sum_{2s+2j \leq n} \frac{(x^2-1)^s (y^2-1)^j u^{2s} v^{2j} (vy-ux)^{n-2s-2j}}{2^{2s+2j} s! j! \left(\lambda + \frac{1}{2}\right)_s \left(\mu + \frac{1}{2}\right)_j (n-2s-2j)!}.
\end{aligned}$$

We have therefore

$$\begin{aligned}
(9.8) \quad & (u \bar{C}^{(\lambda)}(x) - v \bar{C}^{(\mu)}(y))^n \\
&= n! \sum_{2k \leq n} \frac{(vy-ux)^{n-2k}}{2^{2k} k! (n-2k)!} \sum_{j=0}^k \binom{k}{j} \frac{(x^2-1)^{k-j} (y^2-1)^j u^{2(k-j)} v^{2j}}{\left(\lambda + \frac{1}{2}\right)_{k-j} \left(\mu + \frac{1}{2}\right)_j}.
\end{aligned}$$

In particular, for $u = y, v = x$, (9.8) becomes

$$\begin{aligned}
(9.9) \quad & (y \bar{C}^{(\lambda)}(x) - x \bar{C}^{(\mu)}(y))^n \\
&= \begin{cases} 0 & (n \text{ odd}) \\ \frac{n!}{m!} \frac{(x^2-1)^m y^{2m}}{\left(\lambda + \frac{1}{2}\right)_m} F\left(-m, -\lambda-m+\frac{1}{2}; \mu+\frac{1}{2}; \frac{(y^2-1)x^2}{(x^2-1)y^2}\right) & (n=2m), \end{cases}
\end{aligned}$$

while for $u^2(x^2-1) = v^2(y^2-1)$, (9.8) reduces to

$$\begin{aligned}
(9.10) \quad & (u \bar{C}^{(\lambda)}(x) - v \bar{C}^{(\mu)}(y))^n \\
&= n! \sum_{2k \leq n} \frac{(vy-ux)^{n-2k} (x^2-1)^k u^{2k}}{2^{2k} k! (n-2k)!} \frac{(\lambda+\mu+m)_m}{\left(\lambda + \frac{1}{2}\right)_k \left(\mu + \frac{1}{2}\right)_k}.
\end{aligned}$$

In particular for $u = v = 1, x = y$, (9.10) becomes

$$\begin{aligned}
(9.11) \quad & (\bar{C}^{(\lambda)}(x) - \bar{C}^{(\mu)}(x))^n \\
&= \begin{cases} 0 & (n \text{ odd}) \\ \frac{n! (\lambda+\mu+m)_m (x^2-1)^m}{2^{2m} m! \left(\lambda + \frac{1}{2}\right)_m \left(\mu + \frac{1}{2}\right)_m} & (n=2m), \end{cases}
\end{aligned}$$

a result due to BURCHNALL [3, p. 239].

In connection with the above we remark that it follows easily from (2.5) that

$$(9.12) \quad (2y + \bar{A}^{(\lambda)}(x))^n = \bar{A}_n^{(\lambda)}(x - y)$$

and in particular

$$(9.13) \quad (4x + \bar{A}^{(\lambda)}(x))^n = (-1)^n \bar{A}_n^{(\lambda)}(x).$$

Also, using (9.7), we can show that

$$(9.14) \quad (y - \bar{C}^{(\lambda)}(x))^n = \varrho^n \bar{C}_n^{(\lambda)}\left(\frac{y - x}{\varrho}\right),$$

where

$$\varrho = (1 - 2xy + y^2)^{1/2}.$$

In particular for $y = 2x$, (9.14) becomes

$$(9.15) \quad (2x - \bar{C}^{(\lambda)}(x))^n = \bar{C}_n^{(\lambda)}(x),$$

while for $y = x$ we get

$$(9.16) \quad (x - \bar{C}^{(\lambda)}(x))^n = \begin{cases} 0 & (n \text{ odd}) \\ \frac{\binom{1}{2}_m}{\binom{\lambda + \frac{1}{2}}{m}} (x^2 - 1)^m & (n = 2m). \end{cases}$$

For $y = 1/(2x)$, (9.14) reduces to

$$(9.17) \quad (2x \bar{C}^{(\lambda)}(x) - 1)^n = \bar{C}_n^{(\lambda)}(2x^2 - 1).$$

Also for

$$y = x + \frac{x^2}{(x^2 + 1)}$$

we can verify that (9.14) becomes

$$(9.18) \quad (y - \bar{C}^{(\lambda)}(x))^n = (x^2 + 1)^{-\frac{n}{2}} \bar{C}_n^{(\lambda)}(x^2).$$

The formula (9.14) is equivalent to formula (22) on p. 280 of RAINVILLE's book [5]; also the case $\lambda = \frac{1}{2}$ of (9.15) and (9.17) occurs in RAINVILLE [5, p. 347].

R E F E R E N C E S

1. W. A. AL-SALAM. — *On the product of two Legendre polynomials*, *Scandinavica Mathematica*. — Vol. 4 (1956), p. 239-242.
2. W. N. BAILEY. — *On the product of two associated Legendre functions*, *Quarterly Journal of Mathematics (Oxford)*. — Vol. II (1940), pp. 30-350.
3. J. L. BURCHNALL. — *An algebraic property of the classical polynomials*, *Proceedings of the London Mathematical Society (3)*. — Vol. I (1951), pp. 232-240.
4. L. CARLITZ. — *Some polynomials related to the ultraspherical polynomials*. — *Portugaliae Mathematica*.
5. E. D. RAINVILLE. — *Special functions*. — New York, 1960.
6. G. N. WATSON. — *Theory of Bessel functions*. — second edition, Cambridge, 1944.

Duke University.
