SOME POLYNOMIALS RELATED TO THE ULTRA-
SPHERICAL POILVNOMIALS (*)

BY

L. CARLITZ

1. InTrRODUCTION. In a previous paper [4] the writer has de-
fined a set of polynomials 4,* (x) such that

@) () CO47( 1 (n=0)
(1.1) ZA %) Cot 7 (x) = 0 >,

where C (x) is the ultraspherical polynomial defined by
(1.2) 1 —2x+ )~ Z CP (x

It was shown that

W 48 (), @x)" ™
(1.8) AL (x) = (— 1) 22= A1) 00 =31
from which it follows that
@ A camm
(1.4) Ay (x) = pa C, (x).

Making use of A% (x) the inverses of a number of formulas invol-
ving C¥ (¥) were derived.

In the present paper we obtain a number of additional formulas
involving AY ().

(*) Supported in part by National Science Foundation grant G — 9425.
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2. PRELIMINARIES. It will be convenient to recall a number
of formulas from [4]. In the first place (1.1) is a special case of

(2.1) C(ﬂ l)( ) Z‘A(l)( ) CLI‘_'F") (x),

r=0

where 4, u are arbitrary. Next we have the generating relation

(2.2) (1—2x¢+2)° gz AP (x

where )

29 z=1_——2::—t+t_2;

also

o Searurer oL )

where F denotes the hypergeometric function. It is easily verified
that (2.4) is equivalent to (1.3). Another generating relation is given
by

(2.5) i T (4 1) e~ I, (28).

3. SOME EXPANSION FORMULAS. We show first that

! A+s
a1 @)= 3 07 e s AR ).

Indeed, using (1.3), we have

— n—s n! 4s)
2%1 =0 A+ 1)s (A + 8)n—ss Anss (%)
s n! (Qx)n—2r—2s
= 3V a2 s G 5
2x)n 2k k

k! /1+1 (n— 2%) ! ;(—1)5('3-

2k<n

s§=
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Thus (3.1) follows at once.

Next using (1.3) and (3.1) we get

" ln n—29r 2 n—2r
AP (xy) = (— 1) 2,23':, 7(g )(gy_|_ 1), (7£ i) 27) |

s AP (%)
— 1 n—2r—2s
+1), zsg—zr( ) st +7+1)s (+7+8)n—9—s

-2

I
U\M

), A(ﬂl—k) kﬁ_ by (i"_l —
PR TN e e A )&,

We have therefore

(3.2)
* . _{\E (Any" AL“——;II? . . . ay—2
AN = 2 O P et A TR ATE ALY,

In particular for A = u, (3.2) becomes

@3 AP = 3 0 g AR )

while for y =1 we get

(3.4) AP (%) = %gn (— 1)* O 1)(3)(;(1_—1)/:)(1; Wy ABTE ().

We remark that (3.1) and (2.5) yield

) (A+s)
e—2xt — Ztn Z (__ 1)s A,, 2s ( )

n=0 2s=n S! (j' + ) ()~ + S)n—2s
_ i (— t* i " (/H—s) ®)
s=0 Z + s n=0

@ % —A—s —2xt
= 2(_1)=mﬂ——1)s cTA 4 s+ 1) e 0, (20)
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2 T o
=T @A+1) > (—1)°- o Tres(2) € >
s=0 b
so that
= tl q’

Similarly from (3.2)

= B! (u+ 1),

n

% " + W, At (),

Using (2.5) this becomes

_ < w F(—ku+1,24+1,972
A 1)tF e [, (2) =
Fa+ et L @) = 2, (- Hu + 1
I'(p+k+1) (Gy)=#Fe2 Iip (2y8) ,
so that
1 e ( )
F(—Fk p4+ 14+ 1572 L (290).

The formula (3.5) is well known ; also the case 2 = u of (3.6) is
familiar [6, p. 142].

4. OTHER EXPANSION FORMULAS. Analogous to (3.1) we have
a second expansion

wh e =u g Sy,

which can be verified using (1.3). Note that (4.1) is equivalent to

(—1) A+r,z /1+2r

n=

e—2% —-

AT (x)

D\Vve

=]

r=
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) 12

2 TAT, « T4+ 27 L 1)t=2=2 =2 [, (20),

r=

that is, to the familiar expansion [6, p. 138]

o i(z+27)r(z+7)

7! I}._{.2y (2t) .

r=0

Using (4.1) and (1.3) we get

, (A) ym =
A ) = 2 (A+1), (1 +27) 2

2r<n

( 1) (:u + 27)5 A(#+27+25)( )

n—2r—2s
2s<n—2r
}*) 1 (M+2k) : <l_e> B 47 .o
@, 2, k1A 0 2 0Ty v
so that
@y Ban e B)r gwrem
(42) An (xy) - (ﬂ)”y 2én( 1 k An 2k ( )

F(—k p+Fk; 2+1; y7%).
In particular for 1 = u, (4.2) becomes

(4.3) AP (xy) = 3 S (= 1) (]:~)'kA(}.+2k)( )

2k<n

F(—k A+ Fk; A4+1;9y72.
Since

F(—k u+k; 415 1)= (1_5:;)? Do (g e =2

(4.2) reduces for y =1 to

(44) AL’-) (x) _ (j')n (!’l’)k (:u _ Z’)k A(#+2k) (x) .

o (.u)-n ok<n TO’ + 1)k
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Making use of (1.4), the formulas (4.1), (4.2), (4.3), (4.4) can also
be expressed compactly in terms of CY (x).

We remark that (4.2) is equivalent to the familiar expansion
(6, p. 140]

T+ 1)y= =4 I, (20)

S ¢ 2
P2 D) g oty Fimm, ks A4 15979

=]

n=

5. GENERATING FUNCTIONS. We now consider some extensions -
of (2.4). Using (1.3) we get

w n (;,) . n . (2%)"_2'

n=0 n=0 2r<n

®©

_ i Z ,u+27’) @)

f=0 ' n=

8

B ; rl((—f)frT) 12 (1 + 2uct) —n=2-

~

We have therefore

(5.1) 3 {;_ AP (5

n=0

_ . e 4 ]
—(1—{—2xt)“F[2,—2—,l+1,(1+2xt)2.

In particular for u = 24 4 1, the right side becomes

s 48 l i 2 _ 1) —A-%
(1 + 2x2) JL1 e = (1 + 4xt + 4(x® — 1)83 )
so that
(5.2) S (224 1), AP (x) ={1 + 4t + 4(x2 — )2} ~*~

= (A

Similarly for g = 24 + 2, (5.1) reduces to

I

(5.3) i % "AD (x) = (1 + 2x8) {1 + 4t + 4(x2—1)2} "~

S
(=]



Some polynomials related to the ultraspherical polynomials 79

From (5.2) we evidently get

B R S B O
(5.4) (l)” A( (%) = (—1)"2" (»* —1)2C, ((xz 1) %)’

while (5.3) implies an equivalent result, as can be verified without
much difficulty.

When A= p, it is evident that (5.1) reduces to (2.4). Also if
we replace ¢ by ¢/u and let y — oo then formally (5.1) reduces to (2.5).

6. THE PoLyNOMIAL SP# (y, x). We now consider

6.1) S, = Sy, x) = z CY (y) A4 ().
r=0
Then if
t
(62) T

it follows from (2.2) and (2.3) that

n=0 r=0 n=0

=£ CP(y) 27 (1 — 2x¢ + )Y

— (1 —2at+ o S CP(y

=0

=01 —2x+ 2+ (1 — 2yt + 3)—*
so that

(6.3) i V2= (1 — 2t 4 20 (1 — 2yt + 12)=2
In particular, when x =y, since
(1 —2at + 2=t = > AL (),
n=0

it follows that

(6.4) SH (x, x) = A¥? (x).



80 L. Carlitz

We show next that
= , 2" (2), "
P TR 1

This can be proved rapidly by means of the degenerate additicn
theorem [6, p. 369] :

e2v = I"(A) 2"(/1_'_ Il-rrt( ) C(i)( ).

r=0

Then, employing (2.5), we have

0 tr © , ts
ro=t = 3 2 () ey € )

which is evidently equivalent to (6.5).
If we take 2 = y in (6.3) and compare with (6.5) it is clear that

66) (1 —2xt+ 21 —2yt+8)*={—2(y—x) 24

where z is defined by (6.2). If now we rewrite (6.3) as

Z S, ( =1 —2xt+&)r* (1 —2xt+ 2> (1 — 2yt + )

it follows at once that

(6.7) sy, x) = 3 Beory — e almd )
s=0 :
This formula evidently includes both (6.4) and (6.5).
We note that (6.3) yields
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(6.8) 2 SE (y, %) Syt (y, &) = SEHH I (y, ).
Also it can be shown that

6.9 > SPM @ 0)SIET (m y) = ST () ).

r=0

Indeed the left side of (6.9) is equal to

S CP () AL () CFH () AR (y)

rfs+jt+k=n
= > GG (@) AT ()
r+s+k=n

=2 T A ) = ST ),

where we have used (2.1) and (6.4).

7. Tue poryNoMIAL T0* (v, ). In the next place we put

(71) T — T(" ﬂ) x y Z A’) C;u-u") (y)

Then
A(’) (x) r i C;‘H—') (y) "
n=0

v
~
X
~
Il
Ve

n=0 r=0
- %AWwfu—2w+ﬂrw
r=0
By (2.4)
AP W) e (1 — 29t + B)--
r=0
2 xt A A4+1 . 42
(1 T 1—2yt+t2> F[Q’ 2 AL (1—2(y—x)l+2)2]
so that
i =1 —2y+ )+ (1 —2(y—uxt4+ 22
AA+1 L4
'FB’_?“Z+1’Q—2@—mt+ﬁ2

6— Collectanea Mathematica.
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t25 Z CH®) (y —x)8.
It follows that

A W Z s - A+-2s
2 TE )= 3 e ) Oy — )
r+2s+i=n s

Comparing (7.1) with (2.1) it is clear that
(7.3) TH* (x, x) = C¥ P (v).

Also, for A = pu, (7.2) reduces to

(z)"s s
e T ) =2 g, G 0 )

On the other hand, by (1.4), we have

id A —A—7] A n
T8 3) = 3 O o, AT )
r=0
l n
— ﬁAi—}.—n)( )Cy(; 3’ n+f)( )
A+nr=0
A —n, —A—n
=/1+%T£’ e Ay, )
so that
(7.5) TED (v, y) = ;———i e A

We notice also that
(7.6) Z TH® (y, x) TES (x, y) = T4 (y, x).

The proof is similar to the proof of (6.9).

8. FORMULAS FOR THE PRODUCT A (%) AP (x). In the addition
theorem for I (2) :

I

1; (w) 21( i —1)" (& 4 7) Insr () T4 (9) - C (cos D),
r=0

®1) 3
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where
w= (42 + v2 — 2uv cos D)3,

take @ = z. Since

(8.1) implies
1@ +v) _ I'() 2 A+ 7) ( ;{)'1 +r(2u) L5y (20).

(u + v)* uv)* <

Then using (2.5) we get

& 1 & ﬂ-‘i‘f)( ) ’
% u+v I%’ 0,0+ 1), (uv)

It follows that

min(m.n) s iy
(82) (m;n'“")() mBo g =1 > 1T((g}:{)—'1’) AGE) (x) A% ().

(l)m-* n r=0

In terme of CY (x) (8.2) becomes

(WM“’)MMC( " (%)

m (l)mi—n+1 mn

(8.3)

min (m, n)
Z l + 7 )r Cm )’ m) (x) CL——).’—-n) (x)

Again, by formula (37) of [4]
— 1) (22—}—21’)( v

[ @),

I (2%)[} 27) =% }»+7+1) 7 u+v
It follows on applying (2.5) that
AR @AL @) L (phgen menar
(8.4) T e, &~ (—1) (A7) (,H-l),( 7 )( m—r )

Antie (%)
(A)m +n—r
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It can be checked directly that (8.4) is indeed the inverse of (8.2).
In terms of C (x), (8.4) becomes

CE”-—A-—m) (x) Cin_;'_n) (x)

8.5

89 B D
_1 mi ;") 1 (2 A+ 2 r) (m +n—2 1') Conimy 7 (%)
L= Z (A4 1), 7 m—r A)man—rs1

We remark that (8.5) does not contain the formulas found by
Bamev [2] for the product of two associated LLEGENDRE polyno-
mials. Also (8.3) does not contain the inverse formula found by
Ar-Saram [1].

9. SOME ADDITIONAL RESULTS. We conclude with some for-
mulas of a different kind. For brevity put

(9.1) AP () = W 4% ()

A T

=] 1' — r (P T n—r 7!(2x)r—2s
_%( 1) (7)uv 2;;'8!(1_{_1)3(7_23)!

(= nleyry
S Tl T D)0 — 7 — 27

@ u2s 921 (21496)'_25 (va)"—'—2f
=mn! - (_ 1)r o
25%-9 stptA+1)s (w+1); M%,_zj —28) 1 (n—7r—27)1

=mn!

Z-w%iWW%wwW%%
s ioren ST A+ 1) (4 1);(n —2s —27)

This may be written in the following form.

9.2) (0 A® (x) — 04" ()"

S 9n— ‘)k 'l)y —ux)” 2k k wu2k—27 924
=n!2 Rl (n —2Fk)! jzl()(i—f— Dr—i (e +1);°

2k<n

In particular, for v =1y, v = %, (9.2) reduces to
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©93) (y 4% () — % 4" (y))"
|' 0 (n odd)
=Jt%!zll—!_};_i_)__z«‘(_m,—l—m;y+1;;i2> (n = 2m).

For u =v =1, (9.2) becomes

(9-4) (47 (x) — A (5))"

S L )
g, Rl —2R)! A+ 1(p+ 1)

and in particular
A ( 0 (n odd)
(9.5) @Ww—AWmY=1num+u+mm

MG+ Do+ 1,y =2

Formulas of a similar kind can be found for

n!

) G0 = g,

CcP (x).

Making use of the formula

(9.7) Cgv) (x) — 2 @ l)nxn—ir (x2 _ 1)r )
2r<n 92r y | (A + é) (n—27)!

we get
Zn—mﬂﬁwwWW”WH”
r=0

rlar== (x2 —1)°

f By

" Q7
= (— 1) )u’ v
r (7’ 2s£r2258!(ﬂ.+;) (r —2s)!

It
<

R R L0 il it V!
2i<n—r 9% 5 | (y + %) n—r—29)!

i

=nl > Bl Vi Vil
) - Co 1 1
2s+2/<n 925+2 g1 4| |} : =
isn 7s.7.(/.—§—2)s([u—{—2>

7
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S (— 1) () =2 (o)==
-2sSr$n—2]‘ (7_23)| (% _7’—27)'
S (%2 — 1)° (y2 — 1) u® 0¥ (o] —ux)" 2%

25t 27Sn22s|2]s| (A-{- )(ﬂ—{—%) (n—28—-2])!
7

=nl

We have therefore

©.8) @C? (x) — o C¥ ()"
(vy — ux)n—2* L (k> (2 — 1)5=7(y2 — 1)f y2¢:—1) 1,21'.
=M 2k 2R

(e o),

In particular, for u =y, v = %, (9.8) becomes

(9.9) 6 C (x) —xC¥ ()"
0 (n odd)
_ |t ey N | EC R
| m! [11 1) F(——m, —;L—m—i_é’ ,u—l—§, (x2—1) 2) (n=2m),
(H+3),

while for #2 (¥ — 1) = v2 (y®2 — 1), (9.8) reduces to

9.10) wC? (x) — v C¥ (y))"

o 0y —ux) (R — )R (At )
nt 2, 2%kl (n — 2k) | ’

2k n

In particular for v =v =1, x =y, (9.10) becomes

(9.11) (C? (x) — C*™ (x))"
J 0  (n 0dd)
n!l (A4 u+ m)y, (x%—1)"

)

a result due to BurcHNALL [3, p. 239].

(n = 2m),
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In connection with the above we remark that it follows easily
from (2.5) that

(9.12) 2y + 4% (0)" = 4 (x — )
and in particular
(9.13) (42 + A% (2))" = (— 1)" 4V (x).

Also, using (9.7), we can show that

(9.14) (y — C¥ (x))" = ¢"CP (’%‘ J

where
e=(1—2xy+ )t

In particular for y = 2%, (9.14) becomes
(9.15) (2x — C® (2))" = CP (x),
while for y = x we get

0 (n odd)

| ¢
9.16) (x —C% (x))" = | ﬁﬁ_ (22 —1)™ (n = 2m).

(+3)

For y = 1/(2%), (9.14) reduces to

(9.17) (@xCP(x) —1)" = CY¥ (242 — 1).
Also for
x2
YT @

we can verify that (9.14) becomes

9.18) (y— P (0)" = (22 + 1) 2 CP ().

The formula (9.14) is equivalent to formula (22) on p. 280 of

RAINVILLE'S book [5]; also the case A= % of (9.15) and (9.17) oc-

curs in RAINVILLE [5, p. 347].
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