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Abstract

In this note we present an affirmative answer to the problem posed by M. Baronti
and C. Franchetti (oral communication) concerning a characterization of Lp-
spaces among Orlicz sequence spaces. In fact, we show a more general charac-
terization of Orlicz spaces isometric to Lp-spaces.

0. Introduction

Let (Ω,Σ, µ) be a measure space. Let f : R+ → R+ be an Orlicz function, i.e. f
is continuous and nondecreasing in R+, f(0) = 0 and limt→+∞ f(t) = +∞. Denote
by M the set of all measurable, real or complex valued functions defined on Ω. For
g ∈ M set

(0.1) ρf (g) =
∫

Ω

f(| g(t) |)dµ(t).

Let us define an Orlicz space Lf by

(0.2) Lf = {g ∈ M : lim
t→0

ρf (tg) = 0}.

If f is an s-convex function for some s ∈ (0, 1] we can equip Lf with a functional
‖ · ‖f given by

(0.3) ‖g‖f = inf
{
c > 0 : ρf

( g

c1/s

)
≤ 1

}
for g ∈ Lf ,
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called the Luxemburg s-norm (norm if s = 1). Recall that a function f : R+ → R+

is s-convex for some s ∈ (0, 1] if and only if

f(tx+ ry) ≤ tsf(x) + rsf(y)

for any x, y ∈ R+, 0 ≤ t, r ≤ 1, rs + ts = 1 .
If Ω = N,Σ = 2N and µ is a counting measure, we call Lf a sequence Orlicz

space and we will denote it by lf . For more information about Orlicz spaces the
reader is referred to [4].

The aim of this note is to present an affirmative answer (Corollary 1.11) to the
following problem posed by M. Baronti and C. Franchetti (oral communication).

Problem 0.1

Suppose that f : R+ → R+ is a convex function such that f(0) = 0 and f(x) > 0
for some x > 0. Assume that ‖ · ‖f (see (0.3)) satisfies the following:

Property (P): For every a, b, c, d ∈ R if ‖(a, b, 0, ...)‖f = ‖(c, d, 0, ...)‖f then

‖(a, b, x)‖f = ‖(c, d, x)‖f for every x = (x3, x4, ...) ∈ lf .

Is it true that lf is linearly isometric to lp-space for some p ≥ 1?

In fact, we present a more general characterization of Lf -spaces isometric to Lp-
spaces (Theorem 1.10). For other results concerning this topic the reader is referred
to [1-3], [5], [6].

1. The results

We start with the following proposition.

Proposition 1.1

Let f : R+ → R+ be a continuous, strictly increasing in f−1((0,+∞)) function

such that

(1.1) f(0) = 0, f(x) = 1 for some x > 0.

Let s ∈ (0, 1], r1 = 1, r2 ≥ 1 and r3 > 0. Assume additionally that f(y) = 1/r
for some positive y, where r = min {1, r3}. For every x = (x1, x2, x3) ∈ R3 define a

functional ‖ · ‖f by

‖x‖f = inf
{
c > 0 :

3∑
n=1

rnf(| xn | /c1/s) ≤ 1
}
.
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Then the following conditions are equivalent:

Property (A). For every nonnegative real numbers a, b, c, d such that

‖(a, b, 0)‖f = ‖(c, d, 0)‖f

we have:

‖(a, b, x)‖f = ‖(c, d, x)‖f
for any x ∈ R;

Property (B). For every nonnegative real numbers a, b, c, d such that f(a) +
r2f(b) = f(c) + r2f(d) = 1 we have: f(αa) + r2f(αb) = f(αc) + r2f(αd) for any

α ∈ (0, 1).

Proof. Suppose that (B) does not hold. This means that there exist real nonnegative
numbers a, b, c, d such that

(1.2) f(a) + r2f(b) = f(c) + r2f(d) = 1

and α ∈ (0, 1) such that f(αa) + r2f(αb) < f(αc) + r2f(αd) ≤ 1. Hence we can
choose a positive number x such that f(αa) + r2f(αb) + r3f(x) = 1. This means
that ‖(αa, αb, x)‖f = 1. Note that f(αc) + r2f(αd) + r3f(x) > 1. This implies that
‖(αc, αd, x)‖f > 1. Consequently ‖(a, b, x/α)‖f < ‖(c, d, x/α)‖f which contradicts
(A) (by (1.2) ‖(a, b, 0)‖f = ‖(c, d, 0)‖f = 1).

To prove the converse, assume ‖(a, b, 0)‖f = ‖(c, d, 0)‖f = A. This means that

f
( a

A1/s

)
+ r2f

( b

A1/s

)
= f

( c

A1/s

)
+ r2f

( d

A1/s

)
= 1.

For x ∈ R, denote E = ‖(a, b, x)‖f . Note that E ≥ A. Put F = ‖(c, d, x)‖f .We show
that F = E. By the definition of ‖·‖f , f(a/E1/s)+r2f(b/E1/s)+r3f(| x | /E1/s) = 1.
Take α = (A/E)1/s. Applying (B) to the numbers a/A1/s, b/A1/s, c/A1/s, d/A1/s and
α = (A/E)1/s we get

f
( c

E1/s

)
+ r2f

( d

E1/s

)
+ r3f

( | x |
E1/s

)
= 1.

By the definition of ‖ · ‖f , F = E, which completes the proof. �

Theorem 1.2

Let f : R+ → R+ be a continuous, nondecreasing function satisfying (1.1) and

(B). Then f(t) = C · tp for some C, p > 0 and t ∈ [0, x], where x is so chosen that

f(x) = 1.
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First we prove some preliminary results in which we assume additionally that
f(1) = 1.

Lemma 1.3
Let f be as in Theorem 1.2. Assume additionally that f is strictly increasing

in [0, 1]. If f(a) + r2f(b) = f(d) then f(a/d) + r2f(b/d) = 1 for any a, b ∈ [0, 1],
d ∈ (0, 1].

Proof. If d=1, the statement is obvious. Suppose d < 1. If f(a/d) + r2f(b/d) = 1
then we can choose d1 = d with f(a/d1) + r2f(b/d1) = 1. By (B)

f(d) = f
(d · a
d1

)
+ r2f

(d · b
d1

)
.

Since f(d) > 0, this gives immediately d = d1, a contradiction. �

Lemma 1.4
Let f be as in Lemma 1.3. Then for every n ∈ N, a, bi, d ∈ [0, 1] for i = 1, ..., n,

if

f(a) + r2
n∑

i=1

f(bi) = f(d)

then

f(αa) + r2
n∑

i=1

f(αbi) = f(αd)

for every α ∈ [0, 1].

Proof. First we consider the case n = 1. If d = 0, the statement is obvious. Suppose
f(a) + r2f(b) = f(d) = 0. By Lemma 1.3,

f
(a
d

)
+ r2f

( b
d

)
= 1.

Taking β = α · d, by (B), we get

f(αa) + r2f(αb) = f
(βa
d

)
+ r2

(βb
d

)
= f(β) = f(αd)

as required. The case n > 1 follows from the previous one by the induction argu-
ment. �
Definition 1.5. Let f : R+ → R+ be a continuous, nondecreasing function satis-
fying (1.1) and (B). Put

(1.3) A = {(a, b); 0 < a, b < 1, f(a) + r2f(b) = 1}.
For (a, b) ∈ A define by g(a, b) the unique p > 0 such that ap + r2bp = 1.
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Lemma 1.6

Suppose that f : R+ → R+ is a continuous, nondecreasing function satisfying

(1.1) and (B). Let p > 0 be so chosen that there is to > 0 such that f(t) < tp (or

f(t) > tp) for every t ∈ (0, to). Then g(a, b) = p for every (a, b) ∈ A.

Proof. Suppose, on the contrary, that g(a, b) = p for some (a, b) ∈ A. Then

1 = f(a) + r2f(b) = ap + r2bp.

This gives that there is c ∈ [a, b] (we can assume without loss of generality that
a ≤ b) with f(c) = cp. Put co = inf{c ≥ to : f(c) = cp}. By assumptions on f,
co > 0 and f(co) = cpo. Note that by (B)

(1.4) f(coa) + r2f(cob) = f(co) = cpo = (coa)p + r2(cob)p.

Since a, b < 1,

f(coa) < (> resp. )(coa)p

and

f(cob) < (> resp. )(cob)p

which leads to a contradiction with (1.4). �

Lemma 1.7

Let f : R+ → R+ be a continuous, nondecreasing, strictly increasing [0, 1]
function satisfying (1.1) and (B). If f(a) = 1/(r2q) = ap for some q ∈ N \ {0}, p > 0
then f(an) = (an)p for n=2,3,. . .

Proof. Suppose that f(a) = 1/(r2q) = ap. Then, by Lemma 1.4, r2q · f(a2) = f(a)
and consequently,

f(a2) = f(a) · 1
(r2q)

=
(
f(a)

)2 = (a2)p.

To finish the proof it is necessary to apply the induction argument. �
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Proof of Theorem 1.2. Take a ∈ (0, 1) with f(a) = 1/r2 if r2 > 1 or f(a) = 1/2
if r2 = 1. Then f(a) = al for some l > 0. Applying (B) and the induction argument
one can easily get that f(an) = (f(a))n = anl for n = 1, 2 . . . Now take any c ∈ (0, a).
Then there is n ∈ N with an+1 < c ≤ an. Consequently, since f is nondecreasing,

f(an+1) ≤ f(c) ≤ f(an)

and
1

(an)l
≤ 1
cl
<

1
(an+1)l

.

This gives

(1.5) al ≤ f(c)
cl

<
1
al

for every c ∈ (0, a). Now we show that g(i, j) = l (see Def. 1.5) for every (i, j) ∈ A
(see (1.3) ). Note that, by (1.5), for any q = l

lim
t→0

f(t)
tq

= lim
t→0

f(t)
tl

· tl−q = 0 or + ∞ .

Hence there is tq > 0 such that f(t) < tq or f(t) > tq for t ∈ (0, tq). By Lemma 1.6,
g(i, j) = q for any q = l and consequently g(i, j) = l for any (i, j) ∈ A.

Now we show that f is a strictly increasing function in [0,1]. By (1.5), f(t) > 0
for t > 0. By the continuity of f and (B), f(t) < 1 for 0 ≤ t < 1. Note that for every
(i, j) ∈ A

1 = f(i) + r2f(j) = il + r2jl.

Hence, since the function t → tl is strictly increasing, f(t1) = f(t2) implies t1 = t2
for any t1, t2 ∈ (0, 1).

To finish the proof (in the case f(1) = 1), by the continuity and monotonicity
of f , it is sufficient to show that f(t) = tl for every t ∈ f−1((0, 1) ∩ Q). To do
this, suppose that f(aq) = 1/(r2q) = a

pq
q for q = 1, 2, . . . Then by Lemma 1.7

f(anq ) = anpq
q for n = 1, 2, . . . By (1.5), pq = l for q = 1, 2, . . .

Now fix q ∈ N, q > 1. Take any rational number p/q ∈ (0, 1) and suppose
that f(tp) = p/q. We show by the induction argument that f(tp) = tlp. Note that
f(t1) = r2f(aq). By Lemma 1.3, r2f(aq/t1) = 1. Since f is strictly increasing in
[0, 1] and f(1) = 1, aq/t1 = a1. Consequently,

f(t1) =
f(aq)
f(a1)

=
alq
al1

= tl1,

as required.
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Now suppose that f(tp−1) = tlp−1. Note that

f(tp−1) + r2f(aq) = f(tp).

By Lemma 1.3,

f
( tp−1

tp

)
+ r2f

(aq
tp

)
= 1.

Hence (tp−1/tp, aq/tp) ∈ A (see Def. 1.5). Since g(tp−1/tp, aq/tp) = l,

1 = r2
(aq
tp

)l

+
( tp−1

tp

)l

.

Consequently, by the induction argument

tlp = r2alq + tlp−1 = r2f(aq) + f(tp−1) =
p

q
= f(tp)

as required. This completes the proof in the case f(1) = 1. If this assumption is not
satisfied, take a positive x such that f(x) = 1. Consider a function g(t) = f(tx). It
is easy to see that g(1) = 1 and g satisfies the assumptions of Theorem 1.2. By the
proof given above

f(t) = g(t/x) = (t/x)l = x−l · tl,

where l is the index corresponding to g. The proof of Theorem 1.2 is fully complete. �

Definition 1.8. Let (Ω,Σ, µ) be a measure space such that Σ contains at least three
pairwise disjoint sets of positive and finite measure. Let f be as in Proposition 1.1
and let r > 0 will be given. We say that f satisfies property (Ar) if and only if

(1.6) f(x) = 1/r for some positive x;

there exist X1, X2, X3 ∈ Σ of positive and finite measure, 0 < µ(X1), µ(X2) ≤ r,

such that for every a, b, c, d ∈ R if

‖aχ1 + bχ2‖f = ‖cχ1 + dχ2‖f

then
‖aχ1 + bχ2 + xχ3‖f = ‖cχ1 + dχ2 + xχ3‖f

(see (0.3) ) for any x ∈ R. (By (1.6) ‖ · ‖f can be properly defined). Here χi denotes
the characteristic function of Xi, i = 1, 2, 3.
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Theorem 1.9
Let (Ω,Σ, µ) and f be as in Definition 1.8. If f satisfies property (Ar) for some

r > 0 then there exist c, p > 0 such that f(x) = c · xp for x ∈ [0, f−1(1/r)].

Proof. We can assume without loss of generality that µ(X1) ≤ µ(X2). Put f1 =
µ(X1) · f, r2 = µ(X2)/µ(X1), r3 = µ(X3)/µ(X1). Note that if f satisfies (Ar)
then f1, r2, r3 satisfy (A). By Proposition 1.1 and Theorem 1.2, there exist c, p > 0
such that f1(x) = c · xp for x ∈ [0, f−1

1 (1)]. Consequently, f(x) = c1 · xp for x ∈
[0, f−1(1/r)]. �

Theorem 1.10
Let (Ω,Σ, µ) be as in Theorem 1.9. Suppose that f is an s-convex, continuous

function, f(0) = 0 and f(x) > 0 for some positive x. Put

ro = inf {r > 0; (Ar) is satisfied },

zo = inf {z > 0; there exists X ∈ Σ, 0 < µ(X) ≤ z}
(ro = +∞ if (Ar) is not satisfied for any r > 0). If ro = zo then the space Lf (Ω,Σ, µ)
is linearly isometric to Lp(,Ω,Σ, µ) for some p > 0.

Proof. By Theorem 1.9, there exist c, p > 0 such that f(x) = c · xp for
x ∈ [0, f−1(1/ro)]. Note that by the definition of zo the function ‖ · ‖f is uniquely
determined by the values of f in [0, 1/zo]. Since ro = zo the space Lf (Ω,Σ, µ) is
linearly isometric to Lp(,Ω,Σ, µ), as required. �

Corollary 1.11
Let f be a convex, nonnegative function, f(0) = 0 and f(x) > 0 for some

positive x. If the function f satisfies (P) (see Problem 0.1) then the space lf is
linearly isometric to lp for some p ≥ 1.

Proof. By Proposition 1.1 and Theorem 1.2, there exist c, p > 0 such that f(x) =
c · xp for x ∈ [0, f−1(1)]. Note that in our case ro = zo = 1. By Theorem 1.10, lf is
linearly isometric to the space lp. By the proof of Theorem 1.2 and the convexity of
f, p ≥ 1, as required. �

Corollary 1.11 gives an affirmative answer to Problem 0.1.

Remark 1.12. During a preparation of this note the author has received a preprint
of H. Cuenya and M. Marano [2] in which a similar characterization of Lp-spaces
has been proved.
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