Collectanea Mathematica (electronic version): http://www.mat.ub.es/CM

Collect. Math. **48**, 4-6 (1997), 663–671 © 1997 Universitat de Barcelona

A characterization of Orlicz spaces isometric to L_p -spaces

GRZEGORZ LEWICKI

Department of Mathematics, Jagiellonian University, 30-059 Kraków, Reymonta 4, Poland E-Mail: lewicki@im.uj.edu.pl

Abstract

In this note we present an affirmative answer to the problem posed by M. Baronti and C. Franchetti (oral communication) concerning a characterization of L_p -spaces among Orlicz sequence spaces. In fact, we show a more general characterization of Orlicz spaces isometric to L_p -spaces.

0. Introduction

Let (Ω, Σ, μ) be a measure space. Let $f : \mathbb{R}^+ \to \mathbb{R}^+$ be an Orlicz function, i.e. f is continuous and nondecreasing in \mathbb{R}^+ , f(0) = 0 and $\lim_{t \to +\infty} f(t) = +\infty$. Denote by \mathcal{M} the set of all measurable, real or complex valued functions defined on Ω . For $g \in \mathcal{M}$ set

(0.1)
$$\rho_f(g) = \int_{\Omega} f(\mid g(t) \mid) d\mu(t)$$

Let us define an Orlicz space L_f by

(0.2)
$$L_f = \{g \in \mathcal{M} : \lim_{t \to 0} \rho_f(tg) = 0\}.$$

If f is an s-convex function for some $s \in (0, 1]$ we can equip L_f with a functional $\|\cdot\|_f$ given by

(0.3)
$$||g||_f = \inf \left\{ c > 0 : \rho_f \left(\frac{g}{c^{1/s}} \right) \le 1 \right\} \text{ for } g \in L_f,$$

called the Luxemburg s-norm (norm if s = 1). Recall that a function $f : \mathbb{R}^+ \to \mathbb{R}^+$ is s-convex for some $s \in (0, 1]$ if and only if

$$f(tx + ry) \le t^s f(x) + r^s f(y)$$

for any $x, y \in \mathbb{R}^+, 0 \le t, r \le 1, r^s + t^s = 1$.

If $\Omega = \mathbb{N}, \Sigma = 2^{\mathbb{N}}$ and μ is a counting measure, we call L_f a sequence Orlicz space and we will denote it by l_f . For more information about Orlicz spaces the reader is referred to [4].

The aim of this note is to present an affirmative answer (Corollary 1.11) to the following problem posed by M. Baronti and C. Franchetti (oral communication).

Problem 0.1

Suppose that $f : \mathbb{R}^+ \to \mathbb{R}^+$ is a convex function such that f(0) = 0 and f(x) > 0 for some x > 0. Assume that $\|\cdot\|_f$ (see (0.3)) satisfies the following:

Property (P): For every $a, b, c, d \in \mathbb{R}$ if $||(a, b, 0, ...)||_f = ||(c, d, 0, ...)||_f$ then $||(a, b, x)||_f = ||(c, d, x)||_f$ for every $x = (x_3, x_4, ...) \in l_f$. Is it true that l_f is linearly isometric to l_p -space for some $p \ge 1$?

In fact, we present a more general characterization of L_f -spaces isometric to L_p -

In fact, we present a more general characterization of L_f -spaces isometric to L_p -spaces (Theorem 1.10). For other results concerning this topic the reader is referred to [1-3], [5], [6].

1. The results

We start with the following proposition.

Proposition 1.1

Let $f: \mathbb{R}^+ \to \mathbb{R}^+$ be a continuous, strictly increasing in $f^{-1}((0, +\infty))$ function such that

(1.1)
$$f(0) = 0, f(x) = 1$$
 for some $x > 0$.

Let $s \in (0,1]$, $r_1 = 1$, $r_2 \ge 1$ and $r_3 > 0$. Assume additionally that f(y) = 1/rfor some positive y, where $r = \min\{1, r_3\}$. For every $x = (x_1, x_2, x_3) \in \mathbb{R}^3$ define a functional $\|\cdot\|_f$ by

$$||x||_f = \inf \left\{ c > 0 : \sum_{n=1}^3 r_n f(|x_n| / c^{1/s}) \le 1 \right\}.$$

Then the following conditions are equivalent:

Property (A). For every nonnegative real numbers a, b, c, d such that

$$||(a, b, 0)||_f = ||(c, d, 0)||_f$$

we have:

$$||(a, b, x)||_f = ||(c, d, x)||_f$$

for any $x \in \mathbb{R}$;

Property (B). For every nonnegative real numbers a, b, c, d such that $f(a) + r_2 f(b) = f(c) + r_2 f(d) = 1$ we have: $f(\alpha a) + r_2 f(\alpha b) = f(\alpha c) + r_2 f(\alpha d)$ for any $\alpha \in (0, 1)$.

Proof. Suppose that (B) does not hold. This means that there exist real nonnegative numbers a, b, c, d such that

(1.2)
$$f(a) + r_2 f(b) = f(c) + r_2 f(d) = 1$$

and $\alpha \in (0,1)$ such that $f(\alpha a) + r_2 f(\alpha b) < f(\alpha c) + r_2 f(\alpha d) \le 1$. Hence we can choose a positive number x such that $f(\alpha a) + r_2 f(\alpha b) + r_3 f(x) = 1$. This means that $\|(\alpha a, \alpha b, x)\|_f = 1$. Note that $f(\alpha c) + r_2 f(\alpha d) + r_3 f(x) > 1$. This implies that $\|(\alpha c, \alpha d, x)\|_f > 1$. Consequently $\|(a, b, x/\alpha)\|_f < \|(c, d, x/\alpha)\|_f$ which contradicts (A) (by (1.2) $\|(a, b, 0)\|_f = \|(c, d, 0)\|_f = 1$).

To prove the converse, assume $||(a, b, 0)||_f = ||(c, d, 0)||_f = A$. This means that

$$f\left(\frac{a}{A^{1/s}}\right) + r_2 f\left(\frac{b}{A^{1/s}}\right) = f\left(\frac{c}{A^{1/s}}\right) + r_2 f\left(\frac{d}{A^{1/s}}\right) = 1.$$

For $x \in \mathbb{R}$, denote $E = ||(a, b, x)||_f$. Note that $E \ge A$. Put $F = ||(c, d, x)||_f$. We show that F = E. By the definition of $|| \cdot ||_f$, $f(a/E^{1/s}) + r_2 f(b/E^{1/s}) + r_3 f(||x||/E^{1/s}) = 1$. Take $\alpha = (A/E)^{1/s}$. Applying (B) to the numbers $a/A^{1/s}$, $b/A^{1/s}$, $c/A^{1/s}$, $d/A^{1/s}$ and $\alpha = (A/E)^{1/s}$ we get

$$f\left(\frac{c}{E^{1/s}}\right) + r_2 f\left(\frac{d}{E^{1/s}}\right) + r_3 f\left(\frac{|x|}{E^{1/s}}\right) = 1.$$

By the definition of $\|\cdot\|_f$, F = E, which completes the proof. \Box

Theorem 1.2

Let $f : \mathbb{R}^+ \to \mathbb{R}^+$ be a continuous, nondecreasing function satisfying (1.1) and (B). Then $f(t) = C \cdot t^p$ for some C, p > 0 and $t \in [0, x]$, where x is so chosen that f(x) = 1.

First we prove some preliminary results in which we assume additionally that f(1) = 1.

Lemma 1.3

Let f be as in Theorem 1.2. Assume additionally that f is strictly increasing in [0,1]. If $f(a) + r_2 f(b) = f(d)$ then $f(a/d) + r_2 f(b/d) = 1$ for any $a, b \in [0,1]$, $d \in (0,1]$.

Proof. If d=1, the statement is obvious. Suppose d < 1. If $f(a/d) + r_2 f(b/d) \neq 1$ then we can choose $d_1 \neq d$ with $f(a/d_1) + r_2 f(b/d_1) = 1$. By (B)

$$f(d) = f\left(\frac{d \cdot a}{d_1}\right) + r_2 f\left(\frac{d \cdot b}{d_1}\right).$$

Since f(d) > 0, this gives immediately $d = d_1$, a contradiction. \Box

Lemma 1.4

Let f be as in Lemma 1.3. Then for every $n \in \mathbb{N}$, $a, b_i, d \in [0, 1]$ for i = 1, ..., n, if

$$f(a) + r_2 \sum_{i=1}^{n} f(b_i) = f(d)$$

then

$$f(\alpha a) + r_2 \sum_{i=1}^{n} f(\alpha b_i) = f(\alpha d)$$

for every $\alpha \in [0, 1]$.

Proof. First we consider the case n = 1. If d = 0, the statement is obvious. Suppose $f(a) + r_2 f(b) = f(d) \neq 0$. By Lemma 1.3,

$$f\left(\frac{a}{d}\right) + r_2 f\left(\frac{b}{d}\right) = 1.$$

Taking $\beta = \alpha \cdot d$, by (B), we get

$$f(\alpha a) + r_2 f(\alpha b) = f\left(\frac{\beta a}{d}\right) + r_2\left(\frac{\beta b}{d}\right) = f(\beta) = f(\alpha d)$$

as required. The case n>1 follows from the previous one by the induction argument. \Box

DEFINITION 1.5. Let $f : \mathbb{R}^+ \to \mathbb{R}^+$ be a continuous, nondecreasing function satisfying (1.1) and (B). Put

(1.3)
$$\mathcal{A} = \{(a,b); 0 < a, b < 1, f(a) + r_2 f(b) = 1\}.$$

For $(a,b) \in \mathcal{A}$ define by g(a,b) the unique p > 0 such that $a^p + r_2 b^p = 1$.

667

Lemma 1.6

Suppose that $f : \mathbb{R}^+ \to \mathbb{R}^+$ is a continuous, nondecreasing function satisfying (1.1) and (B). Let p > 0 be so chosen that there is $t_o > 0$ such that $f(t) < t^p$ (or $f(t) > t^p$) for every $t \in (0, t_o)$. Then $g(a, b) \neq p$ for every $(a, b) \in \mathcal{A}$.

Proof. Suppose, on the contrary, that g(a, b) = p for some $(a, b) \in \mathcal{A}$. Then

$$1 = f(a) + r_2 f(b) = a^p + r_2 b^p.$$

This gives that there is $c \in [a, b]$ (we can assume without loss of generality that $a \leq b$) with $f(c) = c^p$. Put $c_o = \inf\{c \geq t_o : f(c) = c^p\}$. By assumptions on f, $c_o > 0$ and $f(c_o) = c_o^p$. Note that by (B)

(1.4)
$$f(c_o a) + r_2 f(c_o b) = f(c_o) = c_o^p = (c_o a)^p + r_2 (c_o b)^p$$

Since a, b < 1,

$$f(c_o a) < (> \text{resp. })(c_o a)^p$$

and

$$f(c_o b) < (> \text{resp. })(c_o b)^p$$

which leads to a contradiction with (1.4). \Box

Lemma 1.7

Let $f : \mathbb{R}^+ \to \mathbb{R}^+$ be a continuous, nondecreasing, strictly increasing [0,1] function satisfying (1.1) and (B). If $f(a) = 1/(r_2q) = a^p$ for some $q \in \mathbb{N} \setminus \{0\}, p > 0$ then $f(a^n) = (a^n)^p$ for n=2,3,...

Proof. Suppose that $f(a) = 1/(r_2q) = a^p$. Then, by Lemma 1.4, $r_2q \cdot f(a^2) = f(a)$ and consequently,

$$f(a^2) = f(a) \cdot \frac{1}{(r_2q)} = (f(a))^2 = (a^2)^p.$$

To finish the proof it is necessary to apply the induction argument. \Box

Proof of Theorem 1.2. Take $a \in (0,1)$ with $f(a) = 1/r_2$ if $r_2 > 1$ or f(a) = 1/2if $r_2 = 1$. Then $f(a) = a^l$ for some l > 0. Applying (B) and the induction argument one can easily get that $f(a^n) = (f(a))^n = a^{nl}$ for n = 1, 2... Now take any $c \in (0, a)$. Then there is $n \in \mathbb{N}$ with $a^{n+1} < c \leq a^n$. Consequently, since f is nondecreasing,

 $f(a^{n+1}) \le f(c) \le f(a^n)$

and

$$\frac{1}{(a^n)^l} \le \frac{1}{c^l} < \frac{1}{(a^{n+1})^l}.$$

This gives

(1.5)
$$a^l \le \frac{f(c)}{c^l} < \frac{1}{a^l}$$

for every $c \in (0, a)$. Now we show that g(i, j) = l (see Def. 1.5) for every $(i, j) \in \mathcal{A}$ (see (1.3)). Note that, by (1.5), for any $q \neq l$

$$\lim_{t \to 0} \frac{f(t)}{t^q} = \lim_{t \to 0} \frac{f(t)}{t^l} \cdot t^{l-q} = 0 \quad \text{or} \quad +\infty \,.$$

Hence there is $t_q > 0$ such that $f(t) < t^q$ or $f(t) > t^q$ for $t \in (0, t_q)$. By Lemma 1.6, $g(i, j) \neq q$ for any $q \neq l$ and consequently g(i, j) = l for any $(i, j) \in \mathcal{A}$.

Now we show that f is a strictly increasing function in [0,1]. By (1.5), f(t) > 0 for t > 0. By the continuity of f and (B), f(t) < 1 for $0 \le t < 1$. Note that for every $(i, j) \in \mathcal{A}$

$$1 = f(i) + r_2 f(j) = i^l + r_2 j^l.$$

Hence, since the function $t \to t^l$ is strictly increasing, $f(t_1) = f(t_2)$ implies $t_1 = t_2$ for any $t_1, t_2 \in (0, 1)$.

To finish the proof (in the case f(1) = 1), by the continuity and monotonicity of f, it is sufficient to show that $f(t) = t^l$ for every $t \in f^{-1}((0,1) \cap \mathbb{Q})$. To do this, suppose that $f(a_q) = 1/(r_2q) = a_q^{p_q}$ for q = 1, 2, ... Then by Lemma 1.7 $f(a_q^n) = a_q^{np_q}$ for n = 1, 2, ... By (1.5), $p_q = l$ for q = 1, 2, ...

Now fix $q \in \mathbb{N}$, q > 1. Take any rational number $p/q \in (0,1)$ and suppose that $f(t_p) = p/q$. We show by the induction argument that $f(t_p) = t_p^l$. Note that $f(t_1) = r_2 f(a_q)$. By Lemma 1.3, $r_2 f(a_q/t_1) = 1$. Since f is strictly increasing in [0,1] and f(1) = 1, $a_q/t_1 = a_1$. Consequently,

$$f(t_1) = \frac{f(a_q)}{f(a_1)} = \frac{a_q^l}{a_1^l} = t_1^l,$$

as required.

Now suppose that $f(t_{p-1}) = t_{p-1}^l$. Note that

$$f(t_{p-1}) + r_2 f(a_q) = f(t_p)$$

By Lemma 1.3,

$$f\left(\frac{t_{p-1}}{t_p}\right) + r_2 f\left(\frac{a_q}{t_p}\right) = 1.$$

Hence $(t_{p-1}/t_p, a_q/t_p) \in \mathcal{A}$ (see Def. 1.5). Since $g(t_{p-1}/t_p, a_q/t_p) = l$,

$$1 = r_2 \left(\frac{a_q}{t_p}\right)^l + \left(\frac{t_{p-1}}{t_p}\right)^l.$$

Consequently, by the induction argument

$$t_p^l = r_2 a_q^l + t_{p-1}^l = r_2 f(a_q) + f(t_{p-1}) = \frac{p}{q} = f(t_p)$$

as required. This completes the proof in the case f(1) = 1. If this assumption is not satisfied, take a positive x such that f(x) = 1. Consider a function g(t) = f(tx). It is easy to see that g(1) = 1 and g satisfies the assumptions of Theorem 1.2. By the proof given above

$$f(t) = g(t/x) = (t/x)^l = x^{-l} \cdot t^l,$$

where *l* is the index corresponding to *g*. The proof of Theorem 1.2 is fully complete. \Box

DEFINITION 1.8. Let (Ω, Σ, μ) be a measure space such that Σ contains at least three pairwise disjoint sets of positive and finite measure. Let f be as in Proposition 1.1 and let r > 0 will be given. We say that f satisfies property (A_r) if and only if

(1.6)
$$f(x) = 1/r$$
 for some positive x ;

there exist $X_1, X_2, X_3 \in \Sigma$ of positive and finite measure, $0 < \mu(X_1), \mu(X_2) \leq r$, such that for every $a, b, c, d \in \mathbb{R}$ if

$$||a\chi_1 + b\chi_2||_f = ||c\chi_1 + d\chi_2||_f$$

then

$$||a\chi_1 + b\chi_2 + x\chi_3||_f = ||c\chi_1 + d\chi_2 + x\chi_3||_f$$

(see (0.3)) for any $x \in \mathbb{R}$. (By (1.6) $\|\cdot\|_f$ can be properly defined). Here χ_i denotes the characteristic function of X_i , i = 1, 2, 3.

Theorem 1.9

Let (Ω, Σ, μ) and f be as in Definition 1.8. If f satisfies property (A_r) for some r > 0 then there exist c, p > 0 such that $f(x) = c \cdot x^p$ for $x \in [0, f^{-1}(1/r)]$.

Proof. We can assume without loss of generality that $\mu(X_1) \leq \mu(X_2)$. Put $f_1 = \mu(X_1) \cdot f$, $r_2 = \mu(X_2)/\mu(X_1)$, $r_3 = \mu(X_3)/\mu(X_1)$. Note that if f satisfies (A_r) then f_1, r_2, r_3 satisfy (A). By Proposition 1.1 and Theorem 1.2, there exist c, p > 0 such that $f_1(x) = c \cdot x^p$ for $x \in [0, f_1^{-1}(1)]$. Consequently, $f(x) = c_1 \cdot x^p$ for $x \in [0, f^{-1}(1/r)]$. \Box

Theorem 1.10

Let (Ω, Σ, μ) be as in Theorem 1.9. Suppose that f is an s-convex, continuous function, f(0) = 0 and f(x) > 0 for some positive x. Put

$$r_o = \inf \{r > 0; (A_r) \text{ is satisfied} \},\$$

 $z_o = \inf \{ z > 0; \text{ there exists } X \in \Sigma, 0 < \mu(X) \le z \}$

 $(r_o = +\infty \text{ if } (A_r) \text{ is not satisfied for any } r > 0)$. If $r_o = z_o$ then the space $L_f(\Omega, \Sigma, \mu)$ is linearly isometric to $L_p(\Omega, \Sigma, \mu)$ for some p > 0.

Proof. By Theorem 1.9, there exist c, p > 0 such that $f(x) = c \cdot x^p$ for $x \in [0, f^{-1}(1/r_o)]$. Note that by the definition of z_o the function $\|\cdot\|_f$ is uniquely determined by the values of f in $[0, 1/z_o]$. Since $r_o = z_o$ the space $L_f(\Omega, \Sigma, \mu)$ is linearly isometric to $L_p(\Omega, \Sigma, \mu)$, as required. \Box

Corollary 1.11

Let f be a convex, nonnegative function, f(0) = 0 and f(x) > 0 for some positive x. If the function f satisfies (P) (see Problem 0.1) then the space l_f is linearly isometric to l_p for some $p \ge 1$.

Proof. By Proposition 1.1 and Theorem 1.2, there exist c, p > 0 such that $f(x) = c \cdot x^p$ for $x \in [0, f^{-1}(1)]$. Note that in our case $r_o = z_o = 1$. By Theorem 1.10, l_f is linearly isometric to the space l_p . By the proof of Theorem 1.2 and the convexity of $f, p \geq 1$, as required. \Box

Corollary 1.11 gives an affirmative answer to Problem 0.1.

Remark 1.12. During a preparation of this note the author has received a preprint of H. Cuenya and M. Marano [2] in which a similar characterization of L_p -spaces has been proved.

References

- 1. K. Baron and H. Hudzik, Orlicz spaces which are L^p -spaces, Aequationes Math. 48 (1984), 254–261.
- 2. H. Cuenya and M. Marano, A characterization of Orlicz functions producing an additive property, (preprint).
- 3. C. Finol, H. Hudzik and L. Maligranda, Orlicz spaces which are AM-spaces, to appear in *Archiv der Mathematik*.
- 4. J. Musielak, Orlicz Spaces and Modular Spaces, *Lecture Notes in Math.* **1034**, Springer-Verlag (1983).
- 5. W. Wnuk, Orlicz spaces cannot be normed analogously to L^p -spaces, *Indag. Math.* **46** (3) (1984), 357–359.
- 6. A.C. Zaanen, Some remarks about the definition of an Orlicz space, *Lecture Notes in Math.* **945**, Springer-Verlag (1982), 263–268.