Collectanea Mathematica (electronic version): http://www.mat.ub.es/CM

Collect. Math. 48, 4-6 (1997), 663-671
(c) 1997 Universitat de Barcelona

A characterization of Orlicz spaces isometric to L_{p}-spaces

Grzegorz Lewicki
Department of Mathematics, Jagiellonian University, 30-059 Kraków, Reymonta 4, Poland
E-Mail: lewicki@im.uj.edu.pl

Abstract

In this note we present an affirmative answer to the problem posed by M. Baronti and C. Franchetti (oral communication) concerning a characterization of $L_{p^{-}}$ spaces among Orlicz sequence spaces. In fact, we show a more general characterization of Orlicz spaces isometric to L_{p}-spaces.

0 . Introduction

Let (Ω, Σ, μ) be a measure space. Let $f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$be an Orlicz function, i.e. f is continuous and nondecreasing in $\mathbb{R}^{+}, f(0)=0$ and $\lim _{t \rightarrow+\infty} f(t)=+\infty$. Denote by \mathcal{M} the set of all measurable, real or complex valued functions defined on Ω. For $g \in \mathcal{M}$ set

$$
\begin{equation*}
\rho_{f}(g)=\int_{\Omega} f(|g(t)|) d \mu(t) . \tag{0.1}
\end{equation*}
$$

Let us define an Orlicz space L_{f} by

$$
\begin{equation*}
L_{f}=\left\{g \in \mathcal{M}: \lim _{t \rightarrow 0} \rho_{f}(t g)=0\right\} \tag{0.2}
\end{equation*}
$$

If f is an s-convex function for some $s \in(0,1]$ we can equip L_{f} with a functional $\|\cdot\|_{f}$ given by

$$
\begin{equation*}
\|g\|_{f}=\inf \left\{c>0: \rho_{f}\left(\frac{g}{c^{1 / s}}\right) \leq 1\right\} \text { for } g \in L_{f} \tag{0.3}
\end{equation*}
$$

called the Luxemburg s-norm (norm if $s=1$). Recall that a function $f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$ is s-convex for some $s \in(0,1]$ if and only if

$$
f(t x+r y) \leq t^{s} f(x)+r^{s} f(y)
$$

for any $x, y \in \mathbb{R}^{+}, 0 \leq t, r \leq 1, r^{s}+t^{s}=1$.
If $\Omega=\mathbb{N}, \Sigma=2^{\mathbb{N}}$ and μ is a counting measure, we call L_{f} a sequence Orlicz space and we will denote it by l_{f}. For more information about Orlicz spaces the reader is referred to [4].

The aim of this note is to present an affirmative answer (Corollary 1.11) to the following problem posed by M. Baronti and C. Franchetti (oral communication).

Problem 0.1

Suppose that $f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$is a convex function such that $f(0)=0$ and $f(x)>0$ for some $x>0$. Assume that $\|\cdot\|_{f}$ (see (0.3)) satisfies the following:

Property (P): For every $a, b, c, d \in \mathbb{R}$ if $\|(a, b, 0, \ldots)\|_{f}=\|(c, d, 0, \ldots)\|_{f}$ then $\|(a, b, x)\|_{f}=\|(c, d, x)\|_{f}$ for every $x=\left(x_{3}, x_{4}, \ldots\right) \in l_{f}$.

Is it true that l_{f} is linearly isometric to l_{p}-space for some $p \geq 1$?
In fact, we present a more general characterization of L_{f}-spaces isometric to $L_{p^{-}}$ spaces (Theorem 1.10). For other results concerning this topic the reader is referred to $[1-3],[5],[6]$.

1. The results

We start with the following proposition.

Proposition 1.1

Let $f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$be a continuous, strictly increasing in $f^{-1}((0,+\infty))$ function such that

$$
\begin{equation*}
f(0)=0, f(x)=1 \quad \text { for some } \quad x>0 \tag{1.1}
\end{equation*}
$$

Let $s \in(0,1], r_{1}=1, r_{2} \geq 1$ and $r_{3}>0$. Assume additionally that $f(y)=1 / r$ for some positive y, where $r=\min \left\{1, r_{3}\right\}$. For every $x=\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}$ define a functional $\|\cdot\|_{f}$ by

$$
\|x\|_{f}=\inf \left\{c>0: \sum_{n=1}^{3} r_{n} f\left(\left|x_{n}\right| / c^{1 / s}\right) \leq 1\right\}
$$

Then the following conditions are equivalent:
Property (A). For every nonnegative real numbers a, b, c, d such that

$$
\|(a, b, 0)\|_{f}=\|(c, d, 0)\|_{f}
$$

we have:

$$
\|(a, b, x)\|_{f}=\|(c, d, x)\|_{f}
$$

for any $x \in \mathbb{R}$;
Property (B). For every nonnegative real numbers a, b, c, d such that $f(a)+$ $r_{2} f(b)=f(c)+r_{2} f(d)=1$ we have: $f(\alpha a)+r_{2} f(\alpha b)=f(\alpha c)+r_{2} f(\alpha d)$ for any $\alpha \in(0,1)$.

Proof. Suppose that (B) does not hold. This means that there exist real nonnegative numbers a, b, c, d such that

$$
\begin{equation*}
f(a)+r_{2} f(b)=f(c)+r_{2} f(d)=1 \tag{1.2}
\end{equation*}
$$

and $\alpha \in(0,1)$ such that $f(\alpha a)+r_{2} f(\alpha b)<f(\alpha c)+r_{2} f(\alpha d) \leq 1$. Hence we can choose a positive number x such that $f(\alpha a)+r_{2} f(\alpha b)+r_{3} f(x)=1$. This means that $\|(\alpha a, \alpha b, x)\|_{f}=1$. Note that $f(\alpha c)+r_{2} f(\alpha d)+r_{3} f(x)>1$. This implies that $\|(\alpha c, \alpha d, x)\|_{f}>1$. Consequently $\|(a, b, x / \alpha)\|_{f}<\|(c, d, x / \alpha)\|_{f}$ which contradicts (A) $\left(\right.$ by $\left.(1.2)\|(a, b, 0)\|_{f}=\|(c, d, 0)\|_{f}=1\right)$.

To prove the converse, assume $\|(a, b, 0)\|_{f}=\|(c, d, 0)\|_{f}=A$. This means that

$$
f\left(\frac{a}{A^{1 / s}}\right)+r_{2} f\left(\frac{b}{A^{1 / s}}\right)=f\left(\frac{c}{A^{1 / s}}\right)+r_{2} f\left(\frac{d}{A^{1 / s}}\right)=1
$$

For $x \in \mathbb{R}$, denote $E=\|(a, b, x)\|_{f}$. Note that $E \geq A$. Put $F=\|(c, d, x)\|_{f}$. We show that $F=E$. By the definition of $\|\cdot\|_{f}, f\left(a / E^{1 / s}\right)+r_{2} f\left(b / E^{1 / s}\right)+r_{3} f\left(|x| / E^{1 / s}\right)=1$. Take $\alpha=(A / E)^{1 / s}$. Applying (B) to the numbers $a / A^{1 / s}, b / A^{1 / s}, c / A^{1 / s}, d / A^{1 / s}$ and $\alpha=(A / E)^{1 / s}$ we get

$$
f\left(\frac{c}{E^{1 / s}}\right)+r_{2} f\left(\frac{d}{E^{1 / s}}\right)+r_{3} f\left(\frac{|x|}{E^{1 / s}}\right)=1
$$

By the definition of $\|\cdot\|_{f}, F=E$, which completes the proof.

Theorem 1.2

Let $f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$be a continuous, nondecreasing function satisfying (1.1) and (B). Then $f(t)=C \cdot t^{p}$ for some $C, p>0$ and $t \in[0, x]$, where x is so chosen that $f(x)=1$.

First we prove some preliminary results in which we assume additionally that $f(1)=1$.

Lemma 1.3

Let f be as in Theorem 1.2. Assume additionally that f is strictly increasing in $[0,1]$. If $f(a)+r_{2} f(b)=f(d)$ then $f(a / d)+r_{2} f(b / d)=1$ for any $a, b \in[0,1]$, $d \in(0,1]$.

Proof. If $\mathrm{d}=1$, the statement is obvious. Suppose $d<1$. If $f(a / d)+r_{2} f(b / d) \neq 1$ then we can choose $d_{1} \neq d$ with $f\left(a / d_{1}\right)+r_{2} f\left(b / d_{1}\right)=1$. By (B)

$$
f(d)=f\left(\frac{d \cdot a}{d_{1}}\right)+r_{2} f\left(\frac{d \cdot b}{d_{1}}\right) .
$$

Since $f(d)>0$, this gives immediately $d=d_{1}$, a contradiction.

Lemma 1.4

Let f be as in Lemma 1.3. Then for every $n \in \mathbb{N}, a, b_{i}, d \in[0,1]$ for $i=1, \ldots, n$, if

$$
f(a)+r_{2} \sum_{i=1}^{n} f\left(b_{i}\right)=f(d)
$$

then

$$
f(\alpha a)+r_{2} \sum_{i=1}^{n} f\left(\alpha b_{i}\right)=f(\alpha d)
$$

for every $\alpha \in[0,1]$.
Proof. First we consider the case $n=1$. If $d=0$, the statement is obvious. Suppose $f(a)+r_{2} f(b)=f(d) \neq 0$. By Lemma 1.3,

$$
f\left(\frac{a}{d}\right)+r_{2} f\left(\frac{b}{d}\right)=1
$$

Taking $\beta=\alpha \cdot d$, by (B), we get

$$
f(\alpha a)+r_{2} f(\alpha b)=f\left(\frac{\beta a}{d}\right)+r_{2}\left(\frac{\beta b}{d}\right)=f(\beta)=f(\alpha d)
$$

as required. The case $n>1$ follows from the previous one by the induction argument.

Definition 1.5. Let $f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$be a continuous, nondecreasing function satisfying (1.1) and (B). Put

$$
\begin{equation*}
\mathcal{A}=\left\{(a, b) ; 0<a, b<1, f(a)+r_{2} f(b)=1\right\} \tag{1.3}
\end{equation*}
$$

For $(a, b) \in \mathcal{A}$ define by $g(a, b)$ the unique $p>0$ such that $a^{p}+r_{2} b^{p}=1$.

Lemma 1.6

Suppose that $f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$is a continuous, nondecreasing function satisfying (1.1) and (B). Let $p>0$ be so chosen that there is $t_{o}>0$ such that $f(t)<t^{p}$ (or $\left.f(t)>t^{p}\right)$ for every $t \in\left(0, t_{o}\right)$. Then $g(a, b) \neq p$ for every $(a, b) \in \mathcal{A}$.

Proof. Suppose, on the contrary, that $g(a, b)=p$ for some $(a, b) \in \mathcal{A}$. Then

$$
1=f(a)+r_{2} f(b)=a^{p}+r_{2} b^{p}
$$

This gives that there is $c \in[a, b]$ (we can assume without loss of generality that $a \leq b$) with $f(c)=c^{p}$. Put $c_{o}=\inf \left\{c \geq t_{o}: f(c)=c^{p}\right\}$. By assumptions on f, $c_{o}>0$ and $f\left(c_{o}\right)=c_{o}^{p}$. Note that by (B)

$$
\begin{equation*}
f\left(c_{o} a\right)+r_{2} f\left(c_{o} b\right)=f\left(c_{o}\right)=c_{o}^{p}=\left(c_{o} a\right)^{p}+r_{2}\left(c_{o} b\right)^{p} \tag{1.4}
\end{equation*}
$$

Since $a, b<1$,

$$
f\left(c_{o} a\right)<(>\text { resp. })\left(c_{o} a\right)^{p}
$$

and

$$
f\left(c_{o} b\right)<(>\text { resp. })\left(c_{o} b\right)^{p}
$$

which leads to a contradiction with (1.4).

Lemma 1.7

Let $f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$be a continuous, nondecreasing, strictly increasing $[0,1]$ function satisfying (1.1) and (B). If $f(a)=1 /\left(r_{2} q\right)=a^{p}$ for some $q \in \mathbb{N} \backslash\{0\}, p>0$ then $f\left(a^{n}\right)=\left(a^{n}\right)^{p}$ for $n=2,3, \ldots$

Proof. Suppose that $f(a)=1 /\left(r_{2} q\right)=a^{p}$. Then, by Lemma 1.4, $r_{2} q \cdot f\left(a^{2}\right)=f(a)$ and consequently,

$$
f\left(a^{2}\right)=f(a) \cdot \frac{1}{\left(r_{2} q\right)}=(f(a))^{2}=\left(a^{2}\right)^{p}
$$

To finish the proof it is necessary to apply the induction argument.

Proof of Theorem 1.2. Take $a \in(0,1)$ with $f(a)=1 / r_{2}$ if $r_{2}>1$ or $f(a)=1 / 2$ if $r_{2}=1$. Then $f(a)=a^{l}$ for some $l>0$. Applying (B) and the induction argument one can easily get that $f\left(a^{n}\right)=(f(a))^{n}=a^{n l}$ for $n=1,2 \ldots$ Now take any $c \in(0, a)$. Then there is $n \in \mathbb{N}$ with $a^{n+1}<c \leq a^{n}$. Consequently, since f is nondecreasing,

$$
f\left(a^{n+1}\right) \leq f(c) \leq f\left(a^{n}\right)
$$

and

$$
\frac{1}{\left(a^{n}\right)^{l}} \leq \frac{1}{c^{l}}<\frac{1}{\left(a^{n+1}\right)^{l}}
$$

This gives

$$
\begin{equation*}
a^{l} \leq \frac{f(c)}{c^{l}}<\frac{1}{a^{l}} \tag{1.5}
\end{equation*}
$$

for every $c \in(0, a)$. Now we show that $g(i, j)=l$ (see Def. 1.5) for every $(i, j) \in \mathcal{A}$ (see (1.3)). Note that, by (1.5), for any $q \neq l$

$$
\lim _{t \rightarrow 0} \frac{f(t)}{t^{q}}=\lim _{t \rightarrow 0} \frac{f(t)}{t^{l}} \cdot t^{l-q}=0 \quad \text { or } \quad+\infty
$$

Hence there is $t_{q}>0$ such that $f(t)<t^{q}$ or $f(t)>t^{q}$ for $t \in\left(0, t_{q}\right)$. By Lemma 1.6, $g(i, j) \neq q$ for any $q \neq l$ and consequently $g(i, j)=l$ for any $(i, j) \in \mathcal{A}$.

Now we show that f is a strictly increasing function in $[0,1]$. By (1.5), $f(t)>0$ for $t>0$. By the continuity of f and (B), $f(t)<1$ for $0 \leq t<1$. Note that for every $(i, j) \in \mathcal{A}$

$$
1=f(i)+r_{2} f(j)=i^{l}+r_{2} j^{l}
$$

Hence, since the function $t \rightarrow t^{l}$ is strictly increasing, $f\left(t_{1}\right)=f\left(t_{2}\right)$ implies $t_{1}=t_{2}$ for any $t_{1}, t_{2} \in(0,1)$.

To finish the proof (in the case $f(1)=1$), by the continuity and monotonicity of f, it is sufficient to show that $f(t)=t^{l}$ for every $t \in f^{-1}((0,1) \cap \mathbb{Q})$. To do this, suppose that $f\left(a_{q}\right)=1 /\left(r_{2} q\right)=a_{q}^{p_{q}}$ for $q=1,2, \ldots$ Then by Lemma 1.7 $f\left(a_{q}^{n}\right)=a_{q}^{n p_{q}}$ for $n=1,2, \ldots$ By (1.5), $p_{q}=l$ for $q=1,2, \ldots$

Now fix $q \in \mathbb{N}, q>1$. Take any rational number $p / q \in(0,1)$ and suppose that $f\left(t_{p}\right)=p / q$. We show by the induction argument that $f\left(t_{p}\right)=t_{p}^{l}$. Note that $f\left(t_{1}\right)=r_{2} f\left(a_{q}\right)$. By Lemma 1.3, $r_{2} f\left(a_{q} / t_{1}\right)=1$. Since f is strictly increasing in $[0,1]$ and $f(1)=1, a_{q} / t_{1}=a_{1}$. Consequently,

$$
f\left(t_{1}\right)=\frac{f\left(a_{q}\right)}{f\left(a_{1}\right)}=\frac{a_{q}^{l}}{a_{1}^{l}}=t_{1}^{l}
$$

as required.

Now suppose that $f\left(t_{p-1}\right)=t_{p-1}^{l}$. Note that

$$
f\left(t_{p-1}\right)+r_{2} f\left(a_{q}\right)=f\left(t_{p}\right)
$$

By Lemma 1.3,

$$
f\left(\frac{t_{p-1}}{t_{p}}\right)+r_{2} f\left(\frac{a_{q}}{t_{p}}\right)=1
$$

Hence $\left(t_{p-1} / t_{p}, a_{q} / t_{p}\right) \in \mathcal{A}$ (see Def. 1.5). Since $g\left(t_{p-1} / t_{p}, a_{q} / t_{p}\right)=l$,

$$
1=r_{2}\left(\frac{a_{q}}{t_{p}}\right)^{l}+\left(\frac{t_{p-1}}{t_{p}}\right)^{l}
$$

Consequently, by the induction argument

$$
t_{p}^{l}=r_{2} a_{q}^{l}+t_{p-1}^{l}=r_{2} f\left(a_{q}\right)+f\left(t_{p-1}\right)=\frac{p}{q}=f\left(t_{p}\right)
$$

as required. This completes the proof in the case $f(1)=1$. If this assumption is not satisfied, take a positive x such that $f(x)=1$. Consider a function $g(t)=f(t x)$. It is easy to see that $g(1)=1$ and g satisfies the assumptions of Theorem 1.2. By the proof given above

$$
f(t)=g(t / x)=(t / x)^{l}=x^{-l} \cdot t^{l}
$$

where l is the index corresponding to g. The proof of Theorem 1.2 is fully complete.
Definition 1.8. Let (Ω, Σ, μ) be a measure space such that Σ contains at least three pairwise disjoint sets of positive and finite measure. Let f be as in Proposition 1.1 and let $r>0$ will be given. We say that f satisfies property $\left(A_{r}\right)$ if and only if

$$
\begin{equation*}
f(x)=1 / r \text { for some positive } x \tag{1.6}
\end{equation*}
$$

there exist $X_{1}, X_{2}, X_{3} \in \Sigma$ of positive and finite measure, $0<\mu\left(X_{1}\right), \mu\left(X_{2}\right) \leq r$, such that for every $a, b, c, d \in \mathbb{R}$ if

$$
\left\|a \chi_{1}+b \chi_{2}\right\|_{f}=\left\|c \chi_{1}+d \chi_{2}\right\|_{f}
$$

then

$$
\left\|a \chi_{1}+b \chi_{2}+x \chi_{3}\right\|_{f}=\left\|c \chi_{1}+d \chi_{2}+x \chi_{3}\right\|_{f}
$$

(see (0.3)) for any $x \in \mathbb{R}$. (By (1.6) $\|\cdot\|_{f}$ can be properly defined). Here χ_{i} denotes the characteristic function of $X_{i}, i=1,2,3$.

Theorem 1.9

Let (Ω, Σ, μ) and f be as in Definition 1.8. If f satisfies property $\left(A_{r}\right)$ for some $r>0$ then there exist $c, p>0$ such that $f(x)=c \cdot x^{p}$ for $x \in\left[0, f^{-1}(1 / r)\right]$.

Proof. We can assume without loss of generality that $\mu\left(X_{1}\right) \leq \mu\left(X_{2}\right)$. Put $f_{1}=$ $\mu\left(X_{1}\right) \cdot f, r_{2}=\mu\left(X_{2}\right) / \mu\left(X_{1}\right), r_{3}=\mu\left(X_{3}\right) / \mu\left(X_{1}\right)$. Note that if f satisfies $\left(A_{r}\right)$ then f_{1}, r_{2}, r_{3} satisfy (A). By Proposition 1.1 and Theorem 1.2 , there exist $c, p>0$ such that $f_{1}(x)=c \cdot x^{p}$ for $x \in\left[0, f_{1}^{-1}(1)\right]$. Consequently, $f(x)=c_{1} \cdot x^{p}$ for $x \in$ $\left[0, f^{-1}(1 / r)\right]$.

Theorem 1.10

Let (Ω, Σ, μ) be as in Theorem 1.9. Suppose that f is an s-convex, continuous function, $f(0)=0$ and $f(x)>0$ for some positive x. Put

$$
\begin{gathered}
r_{o}=\inf \left\{r>0 ;\left(A_{r}\right) \text { is satisfied }\right\} \\
z_{o}=\inf \{z>0 ; \text { there exists } X \in \Sigma, 0<\mu(X) \leq z\}
\end{gathered}
$$

$\left(r_{o}=+\infty\right.$ if $\left(A_{r}\right)$ is not satisfied for any $\left.r>0\right)$. If $r_{o}=z_{o}$ then the space $L_{f}(\Omega, \Sigma, \mu)$ is linearly isometric to $L_{p}(, \Omega, \Sigma, \mu)$ for some $p>0$.

Proof. By Theorem 1.9, there exist $c, p>0$ such that $f(x)=c \cdot x^{p}$ for $x \in\left[0, f^{-1}\left(1 / r_{o}\right)\right]$. Note that by the definition of z_{o} the function $\|\cdot\|_{f}$ is uniquely determined by the values of f in $\left[0,1 / z_{o}\right]$. Since $r_{o}=z_{o}$ the space $L_{f}(\Omega, \Sigma, \mu)$ is linearly isometric to $L_{p}(, \Omega, \Sigma, \mu)$, as required.

Corollary 1.11

Let f be a convex, nonnegative function, $f(0)=0$ and $f(x)>0$ for some positive x. If the function f satisfies (P) (see Problem 0.1) then the space l_{f} is linearly isometric to l_{p} for some $p \geq 1$.

Proof. By Proposition 1.1 and Theorem 1.2, there exist $c, p>0$ such that $f(x)=$ $c \cdot x^{p}$ for $x \in\left[0, f^{-1}(1)\right]$. Note that in our case $r_{o}=z_{o}=1$. By Theorem $1.10, l_{f}$ is linearly isometric to the space l_{p}. By the proof of Theorem 1.2 and the convexity of $f, p \geq 1$, as required.

Corollary 1.11 gives an affirmative answer to Problem 0.1.
Remark 1.12. During a preparation of this note the author has received a preprint of H. Cuenya and M. Marano [2] in which a similar characterization of L_{p}-spaces has been proved.

References

1. K. Baron and H. Hudzik, Orlicz spaces which are L^{p}-spaces, Aequationes Math. 48 (1984), 254-261.
2. H. Cuenya and M. Marano, A characterization of Orlicz functions producing an additive property, (preprint).
3. C. Finol, H. Hudzik and L. Maligranda, Orlicz spaces which are AM-spaces, to appear in Archiv der Mathematik.
4. J. Musielak, Orlicz Spaces and Modular Spaces, Lecture Notes in Math. 1034, Springer-Verlag (1983).
5. W. Wnuk, Orlicz spaces cannot be normed analogously to L^{p}-spaces, Indag. Math. 46 (3) (1984), 357-359.
6. A.C. Zaanen, Some remarks about the definition of an Orlicz space, Lecture Notes in Math. 945, Springer-Verlag (1982), 263-268.
