## Collectanea Mathematica (electronic version): http://www.mat.ub.es/CM

Collect. Math. 48, 4-6 (1997), 657-662

(c) 1997 Universitat de Barcelona

# A continuity in the weak topologies of a vector integral operator

#### Y.N. Kuzmin

Samara State University, Math. Department, 443011, st. Ac. Pavlov, 1, Samara, Russia

#### Abstract

Let Y be a sequentially  $\sigma(Y,X)$ -complete Banach space satisfying the Radon-Nikodym property. Then, every vector integral operator  $A: L_X \to M_U$  is continuous in the weak topologies  $\sigma(L_X, L_Y^*)$  and  $\sigma(M_U, M_V^*)$ .

Let  $(S, \Sigma, \mu)$ ,  $(T, \Lambda, \nu)$  be spaces with  $\sigma$ -finite measures and  $(S \times T, \Sigma \times \Lambda, \mu \times \nu)$  be their products;  $L^0 = L^0(S)$  and  $L^0 = L^0(T)$  be spaces of measurable real-valued functions on S and T.

A space  $L \subset L^0$  is called a perfect space if  $L = L^{**}$  and  $S = \operatorname{supp} L \cap \operatorname{supp} L^*$ , where

$$L^* = \left\{ \varphi^* \in L^0 : \int_S |\varphi(s)| \cdot |\varphi^*(s)| \ d\mu(s) < \infty, \ \varphi \in L \right\}.$$

A perfect spaces  $L, L^* \subset L^0$  form a dual pair  $< L, L^* >$  with respect to a bilinear form

$$<\varphi,\varphi^*> = \int_S \varphi(s) \cdot \varphi^*(s) \ d\mu(s)$$

and there exists a sequence of the measurable sets  $S_n \uparrow S$  such that functions  $\chi_{S_n} \in L \cap L^*$ . Spaces  $L_{\varphi}^{\infty}, L_{\varphi}^1 \subset L^0(\operatorname{supp} \varphi), \varphi \in L_+$  form a dual pair  $< L_{\varphi}^{\infty}, L_{\varphi}^1 >$  of a perfect spaces, where

$$L_{\varphi}^{\infty} = \left\{ \psi \in L^{0}(\operatorname{supp} \varphi) : \exists \alpha : |\psi(s)| \leq \alpha \cdot \varphi(s) \; \mu - a.e. \right\} = (L_{\varphi}^{1})^{*},$$

and

$$L_{\varphi}^{1} = \left\{ \psi^{*} \in L_{0}(\operatorname{supp}\varphi) : \int_{\operatorname{supp}\varphi} \varphi(s) \cdot |\psi^{*}(s)| \ d\mu(s) < \infty \right\} = (L_{\varphi}^{\infty})^{*}.$$

658 Kuzmin

For perfect spaces the following equalities take place:

$$L = \cup L_{\varphi}^{\infty} : \varphi \in L_{+}, L^{*} = \cap L_{\varphi}^{1} : \varphi \in L_{+}.$$

Banach spaces X and Y form a dual pair  $\langle X, Y \rangle$  if they form a dual pair as a linear spaces with respect to a bilinear form  $\langle x, y \rangle$  and

$$||x|| = \sup\{|\langle x, y \rangle| : ||y|| \le 1\}$$

and

$$||y|| = \sup \{|\langle x, y \rangle| : ||x|| \le 1\}.$$

Let  $L_X^0 = L_X^0(S)$  and  $L_Y^0 = L_Y^0(S)$  be spaces of Bochner's measurable X- and Y-valued functions on S,  $L_U^0 = L_U^0(T)$  and  $L_V^0 = L_V^0(T)$  be spaces of Bochner's measurable U- and V-valued functions on T, where < U, V > is a pair of Banach spaces in duality.

Let B(X, U) is a Banach space of a linear mapping from X into U. A normed space  $B_{\sigma}(X, U)$  consists of all mappings from B(X, U) which are continuous in the weak topologies  $\sigma(X, Y)$  and  $\sigma(U, V)$ .

A space  $L_X = \{f \in L_X^0 : ||f|| \in L\} \subset L_X^0$  is called a perfect space of the measurable Banach-valued functions if  $L \subset L^0$  is a perfect space of a measurable real-valued functions.

The perfect spaces  $L_X \subset L_X^0$  and  $L_Y^* \subset L_Y^0$  form a dual pair  $\ll L_X, L_Y^* \gg$  with respect to a bilinear form

$$\ll f, f^* \gg = \int_{S} \langle f(s), f^*(s) \rangle d\mu(s).$$

In this case for perfect spaces the following equalities are valid:

$$L_X = \cup L_{\varphi X}^{\infty} : \varphi \in L_+, L_Y^* = \cap L_{\varphi Y}^1 : \varphi \in L_+,$$

$$L_X = \left\{ f \in L_X^0 : \int_S | < f(s), f^*(s) > | d\mu(s) < \infty, f^* \in L_Y^* \right\}$$

and

$$L_Y^* = \left\{ f^* \in L_Y^0 : \int_S | < f(s), f^*(s) > | d\mu(s) < \infty, f \in L_X \right\}.$$

Let  $\ll L_X, L_Y^* \gg$  and  $\ll M_U, M_V^* \gg$  be two dual pairs of a perfect spaces of a measurable Banach-valued functions generated by a dual pairs  $< L, L^* >$  and

 $< M, M^* >$  of a perfect spaces of the measurable real-valued functions  $L, L^* \subset L^0(S)$  and  $M, M^* \subset L^0(T)$ .

A linear mapping  $A: L_X \to M_U$  is called a vector integral operator, if there exists a Bochner's measurable operator-valued function  $K: S \times T \to B_{\sigma}(X, U)$  so that

$$(Af)(t) = \int_S K(s,t)f(s) d\mu(s) \nu - a.e., \quad f \in L_X$$

and

$$\int_{S} \|K(s,t)\| \cdot \|f(s)\| \ d\mu(s) < \infty \ \nu - a.e., \ \ f \in L_{X}.$$

In [1] and [2] the authors showed the continuity of a real integral operators  $A: L \to M$  in the weak topologies  $\sigma(L, L^*)$  and  $\sigma(M, M^*)$ . For the vector integral operators we prove the following.

#### Theorem

Let a Banach space Y has a Radon-Nikodym property and is sequentially  $\sigma(Y,X)$ -complete. Then every vector integral operator  $A: L_X \to M_U$  is continuous in the weak topologies  $\sigma(L_X, L_Y^*)$  and  $\sigma(M_U, M_Y^*)$ .

*Proof.* Let a function  $g^* \in M_V^*$ . We'll show that for every function  $\varphi \in L_+$  there exists a function  $f_{\varphi}^* \in L_{\varphi Y}^1$  so that

$$\ll Af, g^* \gg = \ll f, f_{\varphi}^* \gg, f \in L_{\varphi X}^{\infty}.$$

Let a function  $\varphi \in L_+$  and  $\varphi(s) > 0 \ \mu - a.e.$  A measurable function

$$\psi(t) = \int_{S} \|K(s,t)\| \cdot \varphi(s) \ d\mu(s) \cdot \|g^{*}(t)\| < \infty \ \nu - a.e.$$

There exists a sequence of a measurable sets  $T_n \uparrow T$  such that

$$\chi_{T_n} \in M \cap M^*, \int_{T_n} \psi(t) \ d\nu(t) < \infty, \ n \ge 1.$$

For every  $n \ge 1$  by Fubini's theorem [3] we have

$$\int_{S} \varphi(s) \cdot \int_{T_{n}} \|K(s,t)\| \cdot \|g^{*}(t)\| \ d\nu(t) \ d\nu(s) = \int_{T_{n}} \psi(t) \ d\nu(t) < \infty$$

and a measurable function

$$f_n^*(s) = \int_{T_n} K^*(s, t) g^*(t) \ d\nu(t) \in L^1_{\varphi Y}.$$

660 Kuzmin

For every function  $f \in L^{\infty}_{\varphi X}$  by Fubini's theorem we have

$$\begin{split} \int_{T_n} &< (Af)(t), g^*(t) > d\nu(t) \\ &= \int_{T_n} < \int_S K(s,t) f(s) \ d\mu(s), g^*(t) > d\nu(t) \\ &= \int_{T_n} \int_S < K(s,t) f(s), g^*(t) > d\mu(s) \ d\nu(t) \\ &= \int_S \int_{T_n} < f(s), K^*(s,t) g^*(t) > d\nu(t) \ d\mu(s) \\ &= \int_S < f(s), \int_{T_n} K^*(s,t) g^*(t) \ d\nu(t) > d\mu(s) \\ &= \ll f, f_n^* \gg \end{split}$$

and by Lebesgue's theorem we have

$$\ll Af, g^* \gg = \int_T \langle (Af)(t), g^*(t) \rangle d\nu(t)$$
  
=  $\lim_{n \to \infty} \int_{T_n} \langle (Af)(t), g^*(t) \rangle d\nu(t) = \lim_{n \to \infty} \ll f, f_n^* \gg .$ 

Hence a sequence  $(f_n^*) \subset L_{\varphi Y}^1$  is a fundamental in the weak topology  $\sigma(L_{\varphi Y}^1, L_{\varphi X}^\infty)$ . A space  $L_{\varphi Y}^1$  is a sequentially complete in the weak topology  $\sigma(L_{\varphi Y}^1, L_{\varphi X}^\infty)$  if and only if Y is a sequentially  $\sigma(Y, X)$ -complete Banach space and has the Radon-Nikodym property [4]. Hence, there exists a function  $f_{\varphi}^* \in L_{\varphi Y}^1$  such that

$$\ll Af, g^* \gg = \lim_{n \to \infty} \ll f, f_n^* \gg = \ll f, f_{\varphi}^* \gg, f \in L_{\varphi X}^{\infty}.$$

For a perfect space L there exists a sequence of a measurable mutually disjoint sets  $S_m, m \ge 1$  such that

$$S = \sum_{m=1}^{\infty} S_m, \ \chi_{S_n} \in L \cap L^*, m \ge 1.$$

For every  $m \geq 1$  there exists a function  $f_m^* \in L^1_{\chi_{S_m}Y}(S_m)$  such that

$$\ll Af, g^* \gg = \ll f, f_m^* \gg, f \in L^{\infty}_{\chi_{S_m}X}(S_m).$$

Let a measurable function  $f_0^*(s) = \sum_{m=1}^{\infty} \chi_{S_m}(s) \cdot f_m^*(s)$ . We'll show that a function  $f_0^* \in L_X^*$  and

$$\ll Af, g^* \gg = \ll f, f_0^* \gg, f \in L_X.$$

Let a function  $f \in L_X$ . Then a function  $\varphi(s) = ||f(s)|| \in L_+$  and there exists a function  $f_{\varphi}^* \in L_{\varphi Y}^1$  such that

$$\ll Af_0, g^* \gg = \ll f_0, g_{\varphi}^* \gg, f_0 \in L_{\varphi X}^{\infty}.$$

For a measurable function f there exists a sequence of  $\Sigma$ - step function  $f_n, n \geq 1$  such that

$$f(s) = \mu - a.e. \lim_{n \to \infty} f_n(s), \ ||f_n(s)|| \le ||f(s)|| \ \mu - a.e., \ n \ge 1$$

([5], 2.6. Theorem 2). For every  $n, m \ge 1$   $\Sigma$ - step functions  $\chi_{S_m} \cdot f_n \in L^{\infty}_{\chi_{S_m} X} \cap L^{\infty}_{\varphi X}$ . For every  $n \ge 1$  we have

$$\int_{A} \langle f_n(s), f_{\varphi}^*(s) \rangle d\mu(s) = \ll \chi_A \cdot f_n, f_{\varphi}^* \gg$$

$$= \ll A(\chi_A \cdot f_n), g^* \gg = \ll \chi_A \cdot f_n, f_m^* \gg$$

$$= \int_{A} \langle f_n(s), f_m^*(s) \rangle d\mu(s), A \subset S_m, m \ge 1$$

and then measurable functions

$$< f_n(s), f_{\omega}^*(s) > \chi_{S_m}(s) = < f_n(s), f_m^*(s) > \chi_{S_m}(s) \ \mu - a.e., \ m \ge 1$$

and then measurable functions

$$\langle f_n(s), f_{\varphi}^*(s) \rangle = \sum_{m=1}^{\infty} \langle f_n(s), f_{\varphi}^*(s) \rangle \cdot \chi_{S_m}(s)$$
  
=  $\sum_{m=1}^{\infty} \langle f_n(s), f_m^*(s) \rangle \cdot \chi_{S_m}(s) = \langle f_n(s), f_0^*(s) \rangle \mu - a.e.$ 

A measurable function

$$\langle f(s), f_0^*(s) \rangle = \mu - a.e. \lim_{n \to \infty} \langle f_n(s), f_0^*(s) \rangle$$
  
=  $\mu - a.e. \lim_{n \to \infty} \langle f_n(s), f_{\varphi}^*(s) \rangle = \langle f(s), f_{\varphi}^*(s) \rangle \in L^1(S)$ 

and

$$\begin{split} \ll Af, g^* \gg &= \ll f, f_\varphi^* \gg \\ &= \int_S < f(s), f_\varphi^*(s) > \ d\mu(s) = \int_S < f(s), f_0^*(s) > \ d\mu(s) \\ &= \ll f, f_0^* \gg . \end{split}$$

662 Kuzmin

Then a measurable function

$$f_0^* \in \left\{ f^* \in L_Y^0 : \int_S | < f(s), f^*(s) > | d\mu(s) < \infty, f \in L_X \right\} = L_Y^*.$$

Thus for every function  $g^* \in M_V^*$  there exists a function  $f^* \in L_Y^*$  such that

$$\ll Af, g^* \gg = \ll f, f^* \gg, f \in L_X.$$

This proves the continuity of the vector integral operator  $A: L_X \to M_U$  in the weak topologies  $\sigma(L_X, L_Y^*)$  and  $\sigma(M_U, M_V^*)$ .  $\square$ 

### References

- 1. P.P. Zabreyko, *A research of the theory of the integral operators*, Ph.D. Thesis, Sci.-Voronej State Univ. Voronej, 1968.
- 2. Y.I. Gribanov, Linear operators in the perfect function space, *Izvest. Vuzov. Math.* **8**(99), 1970.
- 3. N. Dunford and J.T. Schwartz, *Linear operators, Part 1: General theory*, New York, Interscience Publishers, 1958.
- 4. V.G. Navodnov and Y.N. Kuzmin, Criterion of the sequential completeness of a space  $L_E^1$  in the weak topology  $\sigma(L_E^1, L_{E'}^\infty)$ ,- The problems of the functional analysis, the measure and the integral, Kuibushev State Univ. Kuibushev, 1984.
- 5. N. Dinculeanu, Vector measures, Berlin, VEB Deutscherverlag der wisenchaften, 1966.