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Abstract

We give an extension of the commutator theorems of Jawerth, Rochberg and
Weiss [9] for the real method of interpolation. The results are motivated by
recent work by Iwaniec and Sbordone [6] on generalized Hodge decompositions.
The main estimates of these authors are based on a commutator theorem for a
specific operator acting onLp spaces and through the use of the complex method
of interpolation. In this note we give an extension of the Iwaniec-Sbordone
theorem to general real interpolation scales.

1. Introduction

In [13] and [9] Jawerth, Rochberg and Weiss initiated the study of second order
and abstract commutator theorems for scales of interpolation spaces. Recall that
given a compatible pair of Banach spaces the classical constructions of interpolation
theory provide methods to obtain parameterized families of spaces with the inter-
polation property. That is if an operator T is bounded from a compatible pair A
to another compatible pair B then T will also be bounded on the corresponding
interpolation spaces. Jawerth, Rochberg, and Weiss (cf. [13] and [9]) have shown
that associated with the classical methods of interpolation are certain operators,
Ω, generally unbounded and non-linear, which can be obtained by differentiation
with respect to certain parameters used in the specific method. These operators
have the property that their commutator with a bounded operator T in the scale,
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[Ω, T ], is also bounded in the scale. This was shown in [13] for the complex method,
and in [9] for the real methods. For example, in the case of Lp spaces one can use
the operators Ωf = f log

(
|f |/‖f‖p

)
. These results have interesting applications in

analysis. We refer to these papers, and also to [2] and the survey [3] for a detailed
account. We should also point out an interesting connection of the subject under
consideration and the theory of logarithmic Sobolev inequalities (cf. [3]), in fact
some of the basic ideas of the theory, for the complex method and in the Lp set-
ting, are already implicit in Feissner’s [5] study of higher order logarithmic Sobolev
inequalities. In the setting of lattices these results have been considerably extended
by Kalton (cf. [10] and the papers quoted therein) who has exhibited a large class
of operators “Ω” which commute with bounded operators in an interpolation scale.
The methods developed in Kalton’s papers are very interesting and his results have
many new applications. However, it is not yet clear how Kalton’s methods can be
incorporated in the general theory. In [12] a new approach to the abstract commu-
tator theorems for the real method was given, showing, in particular, commutation
relations with certain non-linear operators. We also mention [11] where a connection
to the functional calculus for positive operators in Banach spaces is developed. The
connections of this subject with “extrapolation theory” are also explored in [7] and
[11]. A general unified approach to commutator theorems for the real and complex
methods has been obtained in the forthcoming paper [4].

Recently in their study of minimizers for variational problems Iwaniec and Sbor-
done [6] have obtained and used the following commutator theorem using the com-
plex method of interpolation.

Theorem 1

Let T be an operator T :Lp → Lp, p ∈ [r1, r2], where 1 ≤ r1 < r2 < ∞, and let
p
r2

− 1 ≤ ε ≤ p
r1

− 1. Define

Ωε(f) =
( |f |
‖f‖p

)ε

f.

Then,

‖[T,Ωε]‖p/(1+ε) ≤ cp|ε| ‖f‖p (1)

where

cp =
2p(r2 − r1)

(p− r1)(r2 − p)
sup

r1≤s≤r2

‖T‖s.
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This is a useful variant of the commutator theorem of [13] and can be obtained
by the complex method. One of the main points in the applications of (1) is the fact
that ε can be negative. Let us also point out that, as was observed in [6], letting
ε → 0 in (1) we obtain the Rochberg-Weiss [13] theorem in the context of Lp spaces

‖[T,Ω]‖p ≤ cp‖f‖p (2)

where Ω f = f log
(
|f |/‖f‖p

)
.

The purpose of this note is to point out that the Iwaniec-Sbordone result can
be incorporated to the general theory of commutator inequalities for real method
of interpolation. Thus, we exhibit a general class of operators Ωε which commute,
with bounded operators T acting on the initial pairs, in the sense that an estimate
of the type (1) holds for [Ωε, T ] inside the real interpolation scale. When specialized
to the Lp setting our results give the Iwaniec-Sbordone theorem with a less precise
constant.

We assume that the reader is familiar with the basic results of interpolation
theory as developed in [1], where we refer for background information. In order to
make the paper self contained we have included a brief summary of the necessary
definitions concerning the theory of real interpolation commutators.

2. Quasi-logarithmic operators associated to real interpolation

In this section we briefly review the relevant definitions from interpolation theory
and introduce the relevant operators that we shall study in this paper. We refer to
[1], [9] and [3] for more details.

Let A = (A0, A1) be a Banach pair, a ∈ Σ(A) = A0 + A1, and recall that the
K functional of a is defined, for t > 0, by

K(t, a;A) = inf{‖a0‖A0 + t‖a1‖A1 : a = a0 + a1} .

The interpolation spaces Aθ,q;K , 0 < θ < 1, 0 < q ≤ ∞, are defined by

Aθ,q;K =
{
a : ‖a‖Aθ,q;K

=
{∫ ∞

0

[t−θK(t, a, A)]q
dt

t

}1/q

< ∞
}
. (3)

We shall be concerned with the process of computing these interpolation norms. We
say that the decomposition a = a0(t) + a1(t) is almost optimal for the K method if

‖a0(t)‖A0 + t‖a1(t)‖A1 ≤ cK(t, a;A)
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where c is a constant fixed before hand, say c = 2. We then write DK(t;A)a =
DK(t)a = a0(t). The operator Ω associated with this decomposition is defined by

ΩA;Ka =
∫ 1

0

DK(t)a
dt

t
−

∫ ∞

1

(
I −DK(t)

)
a
dt

t
. (4)

Similarly, we can define the corresponding operators Ω associated with the J

and E methods. Recall that given a Banach pair A the spaces Aθ,q;J , 0 < θ <

1, 0 < q ≤ ∞, are defined using the quasi-norms

‖a‖Aθ,q;J
= inf

{[ ∫ ∞

0

(
J
(
s, u(s);A

)
s−θ

)q ds

s

]1/q

: a =
∫ ∞

0

u(s)
ds

s

}

where u: (0,∞) → ∆(A), and the J functional is defined for h ∈ ∆(A), t > 0, by

J(t, h;A) = max{‖h‖A0 , t‖h‖A1}.

We shall say that u(t) is an almost optimal decomposition of a for the J method,
and write DJ(t, A)a = DJ(t)a = u(t), if

a =
∫ ∞

0

u(s)
ds

s
, ‖a‖Aa,q;J

≈
{∫ ∞

0

[J(s, u(s);A)s−θ]q
ds

s

}1/q

. (5)

The corresponding ΩJ operator is defined by

ΩJa =
∫ ∞

0

DJ(t)a log t
dt

t
. (6)

For the E method we have a similar definition. Recall that

E(t, a;A) = inf
‖a1‖A1≤t

{‖a0‖A0 : a = a0 + a1}.

The corresponding interpolation spaces Aθ,q;E , 0 < θ < ∞, 0 < q ≤ ∞, are defined
using the quasi-norms

‖f‖Aθ,q;E
=

{∫ ∞

0

[tθE(t, f, A)]q
dt

t

}1/q

. (7)

Let DE(t;A) = DE(t)a = a0(t), for an almost optimal decomposition, that is
such that

E(t, a;A) ≈ ‖DE(t)a‖A0 . (8)
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Then, the corresponding Ω′s are defined by

ΩEa =
∫ 1

0

DE(t)a
dt

t
−

∫ ∞

1

(
I −DE(t)

)
a
dt

t
. (9)

The main result of [9] is that if T is a bounded operator T :A → B, and F

denotes any of these methods of interpolation, then there exists a constant c(F )
such that if we let [ΩF , T ] = ΩF (B)T − TΩF (A), then

‖[ΩF , T ] f‖F (B) ≤ c‖f‖F (A).

This result also holds for the complex method (cf. [13]).
In the next sections we consider variants of these operators and commutator

theorems for them.

3. A commutator theorem for the E method

We consider first variants of the Ω operators associated with the E method since it
is the method that will provide us with an appropriate generalization of Theorem
1. Let α ∈ (−1, 1), α �= 0, and define

ΩE,αa = Ωαa = α
( ∫ ∞

1

DE(t)atα
dt

t
−

∫ 1

0

(
I −DE(t)

)
atα

dt

t

)
.

Theorem 2

Let A and B be a Banach pairs, T :A → B be a bounded operator, then there

exists a constant c > 0 such that if θ + α > 0,

‖[Ωα, T ]f‖(B0,B1)θ/(α+1),q;E
≤ c

θ
|α|(2cα)θ/(α+1)(α+ 1)1/q‖f‖(A0,A1)θ+α,q;E .

Proof. It is easy to see that according to our definitions for any Banach pair H, and
for t > 0, we have

Ωα,Ha+ aϕα(t) = α
( ∫ ∞

t

DE,H(s)asα
ds

s
−

∫ t

0

(
I −DE,H(s)

)
asα

ds

s

)
(10)

where ϕα(t) = 1 − tα.
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Let ã1(t) = 1
α (

∫ t

0
(I −DE(s))asα ds

s ), then

‖ã1(t)‖H1 ≤ |α|
( ∫ t

0

‖
(
I −DE(s)

)
a‖H1s

α ds

s

)
≤ |α|

(α+ 1)
tα+1. (11)

Thus, letting cα = |α|(α+ 1)−1 and combining (10), (11), and (8), we get

E
(
cαt

α+1,Ωαa+ ϕα(t)a;H
)
≤ |α|

( ∫ ∞

t

E(s, a,H)sα
ds

s

)
. (12)

Therefore if T :A → B, then we can estimate E(2cαtα+1,Ωα,BTa − TΩα,Aa;B) as
less than or equal to

E
(
cαt

α+1,Ωα,BTa+ ϕα(t)Ta;B
)

+ E
(
cαt

α+1, T
(
Ωα,Aa+ ϕα(t)a

)
;B

)
.

Using the fact that T is bounded, and applying (12) to each of these terms we get

E(2cαtα+1,Ωα,BTa− TΩα,Aa;B) ≤ c|α|
( ∫ ∞

t

E(s, a,A)sα
ds

s

)

where c depends only on the norm of T on the initial pair. An application of Hardy’s
inequality (cf. [14]) now yields

{∫ ∞

0

[tθE(2cαtα+1,Ωα,BTa− TΩα,Aa;B)]q
dt

t

}1/q

≤ c|α|
θ

{∫ ∞

0

[E(s, a,A)sα+θ]q
ds

s

}1/q

and therefore we finally get

‖[Ωα, T ]a‖(B0,B1)θ/(α+1),q;E
≤ c|α|

θ
(2cα)θ/(α+1)(α+ 1)1/q‖a‖(A0,A1)θ+α,q;E . �

We consider now in detail the special case of Lp spaces. Although the calculation
of the interpolation spaces in this case is well known we include the details for the
sake of completeness and the reader’s convenience. The E functional for the pair
(L1, L∞) is well known and easy to compute (cf. [1], [8])

E(t, f, L1, L∞) =
∫ ∞

t

λf (s)ds (13)
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and an approximate optimal decomposition is given by f = fχ{|f |>t}+fχ{|f |≤t}. (In
fact an optimal decomposition is given by f = (f−t)++tχ{|f |≤t}). The interpolation
spaces for the E method can be determined using this formula. In fact if we recall
the formula

‖f‖p =
{
p

∫ ∞

0

λf (s)sp−1ds
}1/p

we see, using (13) and integration by parts that

‖f‖(L1,L∞)p−1,1;E = [(p− 1)p]−1‖f‖pp.

A calculation using (9) gives

Ωαf = f |f |α − f.

Let us set Sαf = f |f |α, then we clearly have [T,Ωα] = [T, Sα]. Now to apply
Theorem 2 we let

θ

α+ 1
=

r

1 + α
− 1, then θ + α = r − 1

and the previous discussion gives

‖TSαf − SαTf‖r/1+α
r/1+α ≤ c2(r−1−α)/(α+1)

( |α|
(α+ 1)

)r/α+1 1
(r − 1)

‖f‖rr.

Raising both members of the previous inequality to the power 1+α
r gives an estimate

of Iwaniec-Sbordone type,

∥∥∥∥T
( |f |αf
‖f‖αr

)
− |Tf |αTf

‖f‖αr

∥∥∥∥
r/1+α

≤ c

( |α|
(α+ 1)

) (
1

(r − 1)

)(α+1)/r

‖f‖r. (14)

In order to obtain a version of Theorem 1 we argue that∥∥∥∥T
( |f |αf
‖f‖αr

)
− |Tf |αTf

‖Tf‖αr

∥∥∥∥
r/1+α

≤
∥∥∥∥T

( |f |αf
‖f‖αr

)
− |Tf |αTf

‖f‖αr

∥∥∥∥
r/1+α

+
∥∥∥∥ |Tf |αTf‖f‖αr

− |Tf |αTf
‖Tf‖αr

∥∥∥∥
r/1+α

= I + II, say.

I is controlled by (14) while II can be readily computed

II = ‖Tf‖r
∣∣∣∣
(‖Tf‖r

‖f‖r

)α

− 1
∣∣∣∣.
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Let x = ‖Tf‖r, y = ‖f‖r, u = y/x, ϕ(u) = uα+1 − u, and assume, as we may, that
‖T‖r→r ≤ 1, then u ∈ [0, 1], and we have reduced everything to prove that there
exists c > 0, such that ∀u ∈ [0, 1]

|ϕ(u)| ≤ c|α|. (15)

We study ϕ using calculus and we see that (15) holds with c = ( 1
1+α )

1+α
α . We

conclude the analysis by observing that the factor 1/(1+α) is under control by r2/r.
By collecting estimates we see that we have thus obtained an end point version of
Theorem 1 by real methods with a somewhat worst constant, but with the right
control when α → 0. By reiteration we may obtain the full result.

In a similar fashion we can deal with the family of error functionals Eβ in-
troduced in [9], this is particularly useful when dealing with pairs of weighted Lp

spaces. As an example when dealing with the pair (Lp0(w0(x)dx), Lp1(w1(s)dx))
the corresponding Ω′s can be chosen to be of the form

Ωf = f

(
w0

w1

)ε

− f.

For brevity sake we refer to [9] for other possible applications of Theorem 2, and
where similar calculations are performed. Using these methods one can also deal
with operators T that are not necessarily linear (cf. [12] for a detailed treatment of
non-linear operators in the context of the K method).

4. Remarks on the K and J methods

There are many variants of the results of the previous section. We can consider the
K and J methods, or consider variants of the E method (as in [9]), etc. However,
since the analysis of these methods is similar to the one we developed in detail in the
previous section we shall be rather brief here. In fact in the case of the K method
the analysis follows closely the one given in [12]. We consider operators defined by

Ωαa = α
( ∫ 1

0

DK(s)asα
ds

s
−

∫ ∞

1

(
I −DK(s)

)
asα

ds

s

)
.

Then, as before we see that

Ωαa− ϕα(t)a = α
( ∫ t

0

DK(s)asα
ds

s
−

∫ ∞

t

(
I −DK(s)

)
asα

ds

s

)
.
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This leads to the estimate

K
(
t,Ωαa+ ϕα(t)a,A

)
≤ c|α|

∫ ∞

0

min
{

1,
t

s

}
K(s, a;A)sα

ds

s
. (16)

Thus, if T :A → B, we see, using the cancellation property for commutators in the
usual fashion, the estimate (16), and Hardy’s inequality, that

‖[T,Ωα]f‖Bθ,q;K
≤ c(θ, q)|α| ‖f‖Aθ−α,q;K

.

We formally state this result as,

Theorem 3

Let A,B, be Banach pairs, let T :A → B, be a bounded operator, and let

α ∈ (−1, 1) \ {0}, 0 < θ < 1, 0 < q ≤ ∞, and suppose that 0 < θ − α < 1. Then

there exists a constant c = c(θ, q) such that

‖[T,Ωα]f‖Bθ,q;K
≤ c|α| ‖f‖Aθ−α,q;K

.

Let us remark that the operators Ωα for this method are different than those for
the E method (cf. [9]). In the familiar examples of the theory they can be easily
calculated by trivial modifications to the calculations of Ω in [9] and [3]. For example,
for the pair (L1, L∞) a possible choice of Ωα is given by Ωαf = f(rf )α−f , where rf
is the “rank function” of f defined by rf (x) = |{y: |f(y)| > |f(x)| or |f(y)| = |f(x)|
and y ≤ x}| (cf. [3]).

The J method admits a similar treatment and analogous results. For example
a class of operators that can be treated by these methods is given by (cf. [3])

Ωαa =
∫ ∞

0

tαDJ(t)a
dt

t
.

The relationship to the corresponding Ωα;K operators is, as usual, given by the
fact that the fundamental lemma of interpolation theory implies that we can take
DJ(t)a = t d

dtDK(t)a. We also point out that the resulting theory is closely related to
the functional calculus associated with positive operators in Banach spaces (cf. [11]
and the references therein) and Zafran’s work [15].

We shall deal elsewhere with the complex method and with applications to
weighted norm inequalities for classical operators (cf. also [9], [12], [13]).
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