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A dual property to uniform monotonicity in Banach lattices
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Abstract

For Banach lattices X with strictly or uniformly monotone lattice norm dual,
properties (o)-smoothness and (o)-uniform smoothness are introduced. Linden-
strauss type duality formulas are proved and duality theorems are derived. It is
observed that (o)-uniformly smooth Banach lattices X are order dense in X∗∗.
An application to an optimization problem is given.

1. Introduction

Let X be a Banach lattice with the dual X∗ and let ‖ · ‖ stands for the corresponding
dual (monotone) norms. X is said to be strictly monotone (STM) (we will often
write X ∈ STM etc.) if ‖ x − y ‖< ‖ x ‖ whenever 0 < y ≤ x. The strongest
property in this direction is the uniform monotonicity (UM) of X which means that
δX(ε) > 0 for all ε ∈ (0, 1] where

δX(ε) = inf
{
1− ‖ x− y ‖: 0 ≤ y ≤ x, ‖ x ‖= 1, ‖ y ‖≥ ε

}
(ε ∈ [0, 1]).

In [2] (Chap. XV) this is called a “UMB” space. It is worth noticing the following
fact (cf. [5] and [4], p. 124).

Lemma

For ε ∈ [0, 1) the following formula holds true:

δX(ε) =
σX(ε)

1 + σX(ε)
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where σX(ε) is a modulus of the uniform monotonicity defined by

σX(ε) = inf
{
‖ x + y ‖ −1 : x, y ≥ 0, ‖ x ‖= 1, ‖ y ‖≥ ε

}
(ε ∈ [0, 1]).

Proof. It suffices to apply the following identity, with ‖ u ‖= 1,

‖ u + z ‖ −1
‖ u + z ‖ = 1 −

∥∥∥ u + z

‖u + z‖ − z

‖u + z‖
∥∥∥

and pass to the infimum over the set Uε = {(u, z) : u, z ≥ 0, ‖ u ‖= 1, ‖ z ‖≥ ε}.�

Let us point out that the indicated correspondence of the different definitions
of UM spaces is not longer true for local properties (eg. LUM, cf. [4]).

The UM and STM can be viewed as restrictions of the uniform rotundity (UR)
and the strict convexity (R) to the positive cone X+, respectively ([4], Proposition
1.2 and 1.3). Thus UR ⇒ UM and R ⇒ STM.

We will call X order smooth, in abbreviation (o)-Sm, if for each x ∈ S(X+) (the
positive part of the unit sphere in X) and each order interval [u∗, v∗] ⊂ ∂+ ‖ x ‖
there holds u∗ = v∗, where ∂+ ‖ x ‖={x∗ ∈ S(X∗

+) : < x, x∗ >=‖ x ‖}.
The strongest notion of smoothness of X is the order uniform smoothness, in

abbreviation (o)-USm. We say X to be (o)-USm if ρX(τ)/τ → 0, whenever τ ↘ 0,
where the modulus of smoothness ρX(τ) is defined as follows:

ρX(τ) = sup
{
‖ x ∨ τy ‖ −1 : 0 ≤ x, y, ‖ x ‖= 1, ‖ y ‖= 1

}
(τ ∈ [0, 1]) .

Lemma

For all ε, τ ∈ [0, 1] the following inequalities hold true

(i) 0 ≤ αX(ε) ≤ δX(ε) ≤ ε,

(ii) 0 ≤ ρX(τ)/τ ≤ βX(τ)/τ ≤ 1.

By αX(ε) and βX(τ) we mean the modulus of the uniform rotundity (cf. [4],
Proposition 1.2) and the modulus of smoothness (0 ≤ ε, τ):

αX(ε) = inf{1− ‖ x± y ‖:‖ x ‖= 1, ‖ y ‖≥ ε}

βX(τ) = sup
{‖ x + τy ‖ + ‖ x− τy ‖

2
− 1 :‖ x ‖= 1, ‖ y ‖= 1

}
.
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Corollary
(a) If X is UR (resp. USm) then X is UM (resp. (o)-USm). (b) If X is an R

(i.e. rotund) space (resp. Sm space , i.e. smooth) then X is a STM space (resp.
(o)-Sm space).

Recall (cf. [4]) that any UM Banach lattice X is a KB space (i.e. the norm is
order continuous and X is monotonically complete).

Example: It follows easily from the definitions that δL1(ε) ≡ ε, ρL∞(τ) ≡ 0.
However δL∞(ε) ≡ 0 but ρL1(τ) ≡ τ . Roughly speaking the space L1 is the best
(worst) UM (resp. (o)-USm ) space and the space L∞ is the best (worst) (o)-USm
(resp. UM ) space since the respective modules attain their bounds.

2. (o)-Smoothness and strict monotonicity

The following theorem is true also for normed lattices.

Theorem 1
Let X be a Banach lattice with the dual X∗. Then

(a) if X∗ is a STM space then X is (o)-Sm space,
(b) if X∗ is (o)-Sm space then X is a STM space,

If moreover X is reflexive then the converse implications are also true.

Proof. (a) If X is not (o)-Sm then there exists a proper (order) interval [u∗, v∗] ⊂
∂+ ‖ x ‖. Hence in particular 0 < u∗ < v∗ and [u∗, v∗] ⊂ S(X+) i.e. X∗ is not STM
space which proves (a).

(b). Let X∗ be (o)-Sm space but X is not STM, i.e. ‖ x ‖=‖ x− y ‖ for some
y and x ∈ S(X+) such that 0 < y < x. There exists a positive functional x∗ ∈ X∗

satisfying < x − y, x∗ >=‖ x − y ‖. Hence we conclude that also < x, x∗ >=‖ x ‖.
Let u = x − y. Denoting the canonical injections of x and u into X∗∗ by x̂ and
û, respectively, we obtain finally that the proper interval [û,x̂] ⊂ ∂+ ‖ x∗ ‖, a
contradiction with the (o)-Sm of X∗.

The converse implications for X reflexive are now clear. �
In the following we will try to explain the meaning of the (o)-Sm by means of

the behavior of the function t → η(t) (t > 0), where

η(t) =
‖ x ∨ ty ‖ − ‖ x ‖

t
(x, y ≥ 0, t > 0).

Lemma
The function t →‖ x ∨ ty ‖ is convex and the function η(t) is nonnegative and

nondecreasing for t > 0.
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Proof. Applying the formula x ∨ ty = 1
2 (x + ty+ | x − ty |) the convexity of the

function ‖ x ∨ ty ‖ easily follows. Now the standard reasoning yields the second
assertion. �

As a corollary it follows that η = limt↘0 η(t) = inft>0 η(t) exists and the limit
η is finite and nonnegative.

Now we will prove the basic duality formula relating the notion of the (o)-
smoothness with the behavior of divided difference of special kind.

Theorem 2
Let x, y be arbitrary in S(X+). The following duality formula holds true:

inf
t>0

‖ x ∨ ty ‖ − ‖ x ‖
t

= sup
x∗,y∗∈∂‖x‖,0≤y∗≤x∗

(< y, x∗ − y∗ >) (1)

where the “sup” on the right side is attained.

Proof. First we will prove the inequality “≤”. Let x, y ∈ S(X+) be arbitrary. In
virtue of Lemma above the function t → η(t) is nondecreasing and nonnegative.
Next, for the function η(t) we have (cf. [1] pp. 55 and 175):

η(t) = sup
x∗∈S(X∗

+)

sup
(x∗≥y∗≥0)

{
< y, x∗ − y∗ > +

1
t
(< x, y∗ > −1)

}
,

and η = limt↘0 η(t). Hence there exist nets (tα) , (x∗
α), (y∗α) such that tα ↘ 0,

x∗
α ∈ S(X∗

+), 0 ≤ y∗α ≤ x∗
α and

< y, x∗
α − y∗α > +

1
tα

(< x, y∗α > −1) −→ η.

Since the first term is bounded and tα ↘ 0 we conclude that < y, y∗α >→ 1 and
therefore < x, y∗α >→ 1. Since S(X∗

+) is weakly∗ compact there exist x∗ ∈ S(X∗
+)

and y∗ with 0 ≤ y∗ ≤ x∗ such that x∗
β → x∗ and y∗β → y∗ weakly∗ for a subnet (β).

Hence < x, x∗ >=< x, y∗ >=‖ x ‖ and consequently x∗, y∗ ∈ ∂ ‖ x ‖, 0 ≤ y∗ ≤ x∗.
Passing now to the limit above we see that with these x∗ and y∗ there holds

inf
t>0

‖ x ∨ ty ‖ − ‖ x ‖
t

=< y, x∗ − y∗ >,

and the inequality “≤” follows.
To prove the inequality “≥” let us confine with the supremum in the formula

for η(t) to x∗, y∗ ∈ ∂ ‖ x ‖ such that x∗ ≥ y∗ ≥ 0. Then < x, y∗ >= 1 and the
desired inequality follows which concludes the proof. �

We will relate the smoothness with the (o)-smoothness. Let f(x) =‖ x ‖ and
f+(x, y) be the directional derivative of f at x in the direction y. It is a well known
fact in convex analysis that f+(x, y) = max {< y, x∗ >: x∗ ∈ ∂ ‖ x ‖}. For the left
directional derivative we have −f+(x,−y) = min {< y, x∗ >: x∗ ∈ ∂ ‖ x ‖}.
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Corollary

If x in S(X+) is a smooth point then it is an (o)-smooth point. More precisely

if x ∈ S(X+) and y ≥ 0 then

f+(x, y) + f+(x,−y) ≥ max
x∗,y∗∈∂‖x‖,0≤y∗≤x∗

(< y, x∗ − y∗ >) ≥ 0.

Moreover x ∈ S(X+) is an (o)-smooth point if and only if X+ ⊥ (∂+ ‖ x ‖
−∂+ ‖ x ‖), where y ⊥ x∗ means that < y, x∗ >= 0.

Example: Any point x ∈ S(l2∞), x ≥ 0, is an (o)-smooth point (in fact this space is
(o)-USm). Indeed, it suffices to consider the extreme point x = (1, 1) only. In this
case ∂+ ‖ x ‖ can be identified with the positive part of the unit sphere in l21 which
does not contain any order interval (the coordinatewise ordering is considered).

On the other hand the space l21 is not (o)-smooth. Indeed, a point x = (0, 1)
has ∂+ ‖ x ‖ containing an order interval [y∗, x∗] (x∗ = (1, 1), y∗ = (0, 1)) which is
the largest possible.

3. Uniform properties and duality

In this paragraph Lindenstrauss type duality formulas relating the modulus of uni-
form monotonicity δX(ε) and the modulus of (o)-uniform smoothness ((o)-USm)
ρX(τ) are proved and the main duality theorem is derived.

Let us first observe that ρX(τ) ≤ ρX∗∗(τ) and δX(ε) ≥ δX∗∗(ε) (ε, τ ∈ [0, 1]).

Theorem 3

Let x, y be arbitrary in S(X+). The following duality formulas hold true:

(a) ρX(τ) = ρX∗∗(τ),

(b) δX(ε) = δX∗∗(ε) and

(c) ρX∗(τ) = sup0≤ε≤1

(
ετ − δX(ε)

)
,

(d) δX(ε) = sup0≤τ≤1 (τε− ρX∗(τ))

where ε, τ ∈ [0, 1].
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Proof. (c). Let x∗, y∗ ∈ S(X∗
+) be arbitrary but fixed, τ ∈ [0, 1] and x ∈ S(X+).

Then

< x, x∗ ∨ τy∗ > −1 = sup
x≥u≥0

(< x− u, x∗ > +τ < u, y∗ >) − 1

≤ sup
x≥u≥0

(‖ x− u ‖ +τ ‖ y∗ ‖‖ u ‖) − 1

≤ sup
(0≤ε≤1)

sup
(0≤u≤x,‖x‖=1,‖u‖≥ε)

(‖ x− u ‖ −1 + τε)

= sup
0≤ε≤1

(
τε− δX(ε)

)
.

Now, passing to the “sup” over x ∈ S(X+) and then over x∗, y∗ ∈ S(X∗
+) we get

ρX∗(τ) ≤ sup
0≤ε≤0

(
τε− δX(ε)

)
. (2)

Now, let ε ∈ [0, 1], and fix x ∈ S(X+) and u such that 0 ≤ u ≤ x. Then there
exist x∗, y∗ ∈ S(X∗

+) such that < x−u, x∗ >=‖ x−u ‖ and < u, y∗ >=‖ u ‖. Hence
for τ ∈ [0, 1]

ρX∗(τ) ≥ ‖ x∗ ∨ τy∗ ‖ −1

≥ < x, x∗ ∨ τy∗ > −1

= sup
0≤y≤x

(
< x− y, x∗ > +τ < y∗, y∗ >

)
− 1

≥ ‖ x− u ‖ +τ ‖ u ‖ −1 ≥ τε− (1− ‖ x− u ‖).

Now, passing to the supremum over x and u indicated and then over ε ∈ [0, 1],
we obtain

ρX∗(τ) ≥ sup
0≤ε≤1

(
τε− δX(ε)

)
. (3)

Collecting (2) and (3) the property (c) follows.

To prove (b) we will estimate δX(ε) from below. First in virtue of (c)

δX(ε) ≥ sup
0≤τ≤1

(
ετ − sup

(x∗,y∗)∈S(τ)

(‖ x∗ ∨ y∗ ‖ −1)
)

(4)

for all ε ∈ [0, 1], where S(τ) = {(x∗, y∗) : x∗, y∗ ≥ 0, ‖ x∗ ‖= 1, ‖ y∗ ‖≤ τ}.
Let ε, η, τ ∈ (0, 1] be arbitrary. For each (x∗, y∗) ∈ S(τ) there exists x ∈ S(X+)

such that
‖ x∗ ∨ y∗ ‖ ≤ < x, x∗ ∨ y∗ > +η. (5)
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Denote Aε = {(x, y) : 0 ≤ y ≤ x, ‖ y ‖≤ ε} and Bε = {(x, y) : 0 ≤ y ≤ x, ‖
y ‖≤ ε}. Given x∗, y∗ ∈ S(τ) we have

< x, x∗ ∨ y∗ > −1 = sup
0≤y≤x

(< x− y, x∗ > + < y, y∗ >) − 1

≤ max{sup
Aε

(‖ x− y ‖ −1 + τ ‖ y ‖),

sup
Bε

(‖ x− y ‖ −1 + τ ‖ y ‖)}

≤ max {τε,−δX(ε) + τ}
≤ τε− δX(ε) + τ.

Hence with x∗, y∗ and x as above, from (4) and (5) it follows that

δX(ε) ≥ sup
0≤τ≤1

{ετ − ρX∗(τ)}

≥ τε− (< x, x∗ ∨ y∗ > −1 + η)

= δX(ε) − τ − η.

Since η and τ were arbitrary in (0, 1] we get the equality in (4) for each ε ∈ (0, 1] as
desired. The case ε = 0 is obvious in virtue of ρ((τ)X∗) ≤ τ and δX(0) = 0.

To prove (a) it suffices to prove that ρX(τ) ≥ ρX∗∗(τ). For this let x∗, y∗ ∈ X+

be such that ‖ x∗ ‖= 1, 0 ≤ y∗ ≤ x∗, 0 �= y∗ and let η ∈ (0, 1]. Then there exist
x, y ∈ S(X+) such that

‖ x∗ − y∗ ‖ ≤ < x, x∗ − y∗ > + η and ‖ y∗ ‖ ≤ < y, y∗ > + η. (6)

With these x, y, x∗, y∗ and η we have

ρX(τ) ≥ ‖ x ∨ τy ‖ −1

≥ < x ∨ τy, x∗ > −1

= sup
0≤y∗≤x∗

(
< x, x∗ − y∗ > + τ < y, y∗ >

)
− 1

≥ < x, x∗ − y∗ > + τ < y, y∗ > −1

≥ ‖ x∗ − y∗ ‖ − η + τ(‖ y∗ ‖ −η) − 1.

Taking the supremum over x∗, y∗ indicated we get

ρX(τ) ≥ sup
0≤ε≤1

sup
(‖x∗‖=1,0≤y∗≤x∗,‖y∗‖=ε)

(τε+ ‖ x∗ − y∗ ‖ −1) − 2η

= sup
0≤ε≤1

(τε− δX∗(ε)) − 2η = ρX∗∗(τ) − 2η.
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Since η ∈ (0, 1] was arbitrary we get the desired inequality and hence (a) follows.

Finally to prove (b) it suffices to apply (a) and (d) respectively:

δX∗∗(ε) = sup
0≤τ≤1

(τε− ρX∗∗∗(τ))

= sup
0≤τ≤1

(τε− ρX∗(τ))

= δX(ε). �

In the Proposition below we collect basic properties of the modules δX(ε) and ρX∗(τ).

Proposition 4

The following properties hold true.

(a) δX(ε) ≡ 0 (resp. ε ) if and only if ρX∗(τ) ≡ τ (resp. 0).

(b) ετ ≤ δX(ε) + ρX∗(τ) ≤ ε + τ. Moreover, given ε, τ ∈ [0, 1] the equality on

the right is attained if and only if δX(ε) = ε and ρX∗(τ) = τ .

(c) The functions δX(ε), ρX∗(τ) are convex (nonnegative) and continuous on

the interval [0, 1] with δX(0) = ρ∗X(0) = 0 and therefore nondecreasing.

Proof. (a) In virtue of Theorem 3(d), δX(ε) = 0 for all ε ∈ [0, 1] implies that
τε ≤ ρX∗(τ) ≤ τ for all ε ∈ [0, 1]. Hence ρX∗(τ) ≡ 0. To prove the converse
implication we put in Theorem 3(d) ρX∗(τ) ≡ τ . Hence δX(ε) ≡ 0. The remaining
cases follow in the same way so we omit their proofs.

(b) It was already stated that 0 ≤ δX(ε) ≤ ε and 0 ≤ ρX∗(τ) ≤ τ . Hence and
from (d) in Theorem 3, (b) follows.

(c) From (c) and (d) in Theorem 3 it follows that the functions δX(ε), ρX∗(τ)
are pointwise suprema of families of affine functions on the interval (0, 1). Therefore
they are lsc and convex on (0, 1) and hence continuous and nondecreasing. From the
definitions it follows that δX(0) = ρX∗(0) = 0 and consequently they are continuous
at zero from the right. Since δX(1) ≥ δX(ε) = sup0≤τ≤1 (τ − ρX∗(τ) − τ(1 − ε)) ≥
δX(1) + (1− ε), we conclude that δX(ε) is left continuous at 1. The same reasoning
applies to ρX∗(τ) so the proof is finished. �

As a consequence of Theorem 3 we get the following duality theorem.

Theorem 5

Let X be a Banach lattice. Then

(a) X is UM (resp. (o)-USm) if and only if X∗∗ is UM (resp. (o)-USm).
(b) X is UM if and only if X∗ is (o)-USm.
(c) X∗ is UM if and only if X is (o)-USm.
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Proof. (a) This follows immediately from Theorem 3 ((a),(b)).
(b) If X∗ is not an (o)-USm space then infτ>0 ρX∗(τ)/τ > α for some α > 0,

because the function τ → ρX∗(τ)/τ is nondecreasing and continuous on (0, 1] (apply
the property of the function η(t) from Sec. 2). Therefore

δX(ε) = sup
0≤τ≤1

τ
(
ε− ρX∗(τ)

τ

)
≤ sup

0≤τ≤1
τ(ε− α) = 0

whenever 0 < ε ≤ α, i.e. X is not UM.
To prove the converse implication let X be not UM, i.e. δX(ε0) = 0 for some

ε0 ∈ (0, 1). Then

ρX∗(τ)
τ

= sup
0≤ε≤1

(
ε− δX(ε)

τ

)
≥ ε0 for τ ∈ (0, 1],

i.e. X∗ is not (o)-USm. Collecting these all (b) follows.
Now let X∗ be UM. From (b) X∗∗ is then (o)-USm. Since X embeds as a closed

sublattice (isometrically) into X∗∗ we conclude that X is (o)-USm. To prove the
converse let X be (o)-USm. Then in virtue of (a) X∗∗ is (o)-USm and hence (using
(b)) X∗ is UM as desired. Thus (c) holds true and the proof is finished. �

As a corollary we get the following applications of the notion of UM and (o)-
USm spaces.

Theorem 6

Let X be a Banach lattice. Then

(a) If X is UM then X is a KB -space.

(b) If X is (o)-USm then X∗∗ is the band generated by X in X∗∗ .

Proof. (a) This is a known fact (cf. [2], Chap. XV, Theorem 21) so we omit the
proof. (b) In virtue of Theorem 5 if X is (o)-USm then X∗ is a UM-space. Now
applying Theorem 2.4.14 from [8] we conclude that X∗∗ is the band generated by X

in X∗∗. �

Applying results from this section and characterizations of STM and UM Orlicz
spaces for Luxemburg and Orlicz (in the Amemiya form, cf. [3], [7]) norm (see [4],
[5], [3]), we derive in [7] characterizations of (o)-Sm and (o)-USm Orlicz spaces as
well we obtain estimations for the modules δX(ε), ρX∗(τ).
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4. An application to optimization

Let x be arbitrary but fixed on S(X+). Define a functional

fx(y) =‖ x ∨ y ‖, where y ∈ X and y ≥ 0.

Clearly fx(y) ≥ fx(0) and fx(y) ≥ fx(x). Therefore the (order) interval [0, x] ⊂
Pfx = {y ∈ X : y ≥ 0, fx(0) =‖ x ∨ y ‖}.
Definition. Let x be fixed as above. We say that Pfx is a set of solutions of the
optimization problem: {

fx(y) −→ min

y ≥ 0.

As a corollary from Theorem 2 we get a criterion for potential members of Pfx .

Theorem 7

A necessary condition for u ∈ Pfx is

max
x∗,y∗∈∂‖x‖,0≤y∗≤x∗

< u, x∗ − y∗ > = 0.

This condition is trivially satisfied if x is an (o)-Sm point, i.e. ∂ ‖ x ‖ ∩X∗
+ contains

no proper order interval.

Example: Let us consider the space l1 and let x = (xn) be in S(l1) with xn ≥ 0.
Let x∗ ≥ y∗ ≥ 0 where x∗ = (αn), y∗ = (βn) are from ∂ ‖ x ‖. Thus

∨
n αn = 1

and
∨

n βn = 1 with αn ≥ βn ≥ 0. Hence, in particular, xn(αn − βn) = 0 for all
n. Let y = (yn) be nonnegative such that < y, x∗ − y∗ >= 0. Hence if follows
yn(αn − βn) = 0 for all n. Consequently the supports of x∗ and y∗ are the same:
suppn(xn) = suppn(yn). In fact we have a little more. Namely y = (yn) is in Pfx if
yn ∈ [0, xn] for all n, since x ∨ y = (xn ∨ yn) and ‖ x ∨ y ‖=‖ x ‖.

In the theorem below full characterization of elements y ∈ Pfx is given.

Theorem 8

Let x ∈ S(X+) be fixed and let y ≥ 0. The following statements are equivalent.

(a) y ∈ Pfx .

(b) There exists x∗ ∈ X∗
+ such that

(i) ‖ x∗ ‖= 1 and < x, x∗ >=‖ x ‖,
(ii) < x ∨ y, x∗ >=‖ x ∨ y ‖,
(iii) ∀(0≤y∗≤x∗) < y − x, y∗ > ≤ 0.
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Proof. (a)⇒(b). There exists x∗ ∈ S(X∗
+) such that < x, x∗ >=‖ x ‖. Now,

applying (a), we obtain

‖ x ‖=‖ x ∨ y ‖ ≥< x ∨ y, x∗ >

= sup
0≤y∗≤x

(< x, x∗ − y∗ > + < y, y∗ >)

=< x, x∗ > + sup
0≤y∗≤x

< y − x, y∗ >

=‖ x ‖ + sup
0≤y∗≤x

< y − x, y∗ >.

Hence (b)(ii)-(iii) follow.
(a)⇐(b). We have to prove that for y ≥ 0 satisfying (b) there holds ‖ x ∨ y ‖=

‖ x ‖. In virtue of (b)

‖ x ∨ y ‖ =< x ∨ y, x∗ >

= sup
0≤y∗≤x

(< x, x∗ − y∗ > + < y, y∗ >)

=< x, x∗ > + sup
0≤y∗≤x

< y − x, y∗ > =‖ x ‖

which finishes the proof. �

References

1. C. Aliprantis, O. Burkinshaw, Positive Operators, Academic Press Inc., 1985.
2. G. Birkhoff, Lattice Theory, Providence, RI, 1967.
3. H. Hudzik, W. Kurc, Monotonicity of Musielak-Orlicz spaces equipped with the Orlicz norm (to

appear).
4. W. Kurc, Strictly and uniformly monotone Musielak-Orlicz spaces and applicatios to best ap-

proximation, Journal of Approximation Theory 69(2), (1962), 173–187.
5. W. Kurc, Strictly and uniformly monotone sequential Musielak-Orlicz spaces (to appear).
6. W. Kurc, Extreme points of the unit ball in Orlicz spaces of vector-valued functions with the

Amemiya norm, Mathematica Japonica 38(2), (1993), 277–288.
7. W. Kurc, Musielak-Orlicz spaces with order smooth norms, (to appear).
8. P. Nieberg, Banach Lattices, Springer Verlag, 1991.


