Collectanea Mathematica (electronic version): http://www.imub.ub.es/collect

Collect. Math. 44 (1993), 155-165
(c) 1994 Universitat de Barcelona

A dual property to uniform monotonicity in Banach lattices

W. Kurc
Institute of Mathematics, A. Mickiewicz University, Poznań, Poland

Abstract

For Banach lattices X with strictly or uniformly monotone lattice norm dual, properties (o)-smoothness and (o)-uniform smoothness are introduced. Lindenstrauss type duality formulas are proved and duality theorems are derived. It is observed that (o)-uniformly smooth Banach lattices X are order dense in $X^{* *}$. An application to an optimization problem is given.

1. Introduction

Let X be a Banach lattice with the dual X^{*} and let $\|\cdot\|$ stands for the corresponding dual (monotone) norms. X is said to be strictly monotone (STM) (we will often write $X \in \mathrm{STM}$ etc.) if $\|x-y\|<\|x\|$ whenever $0<y \leq x$. The strongest property in this direction is the uniform monotonicity (UM) of X which means that $\delta_{X}(\epsilon)>0$ for all $\epsilon \in(0,1]$ where

$$
\delta_{X}(\epsilon)=\inf \{1-\|x-y\|: 0 \leq y \leq x,\|x\|=1,\|y\| \geq \epsilon\} \quad(\epsilon \in[0,1]) .
$$

In [2] (Chap. XV) this is called a "UMB" space. It is worth noticing the following fact (cf. [5] and [4], p. 124).

Lemma

For $\epsilon \in[0,1)$ the following formula holds true:

$$
\delta_{X}(\epsilon)=\frac{\sigma_{X}(\epsilon)}{1+\sigma_{X}(\epsilon)}
$$

where $\sigma_{X}(\epsilon)$ is a modulus of the uniform monotonicity defined by

$$
\sigma_{X}(\epsilon)=\inf \{\|x+y\|-1: x, y \geq 0,\|x\|=1,\|y\| \geq \epsilon\} \quad(\epsilon \in[0,1]) .
$$

Proof. It suffices to apply the following identity, with $\|u\|=1$,

$$
\frac{\|u+z\|-1}{\|u+z\|}=1-\left\|\frac{u+z}{\|u+z\|}-\frac{z}{\|u+z\|}\right\|
$$

and pass to the infimum over the set $U_{\epsilon}=\{(u, z): u, z \geq 0,\|u\|=1,\|z\| \geq \epsilon\}$.
Let us point out that the indicated correspondence of the different definitions of UM spaces is not longer true for local properties (eg. LUM, cf. [4]).

The UM and STM can be viewed as restrictions of the uniform rotundity (UR) and the strict convexity (R) to the positive cone X_{+}, respectively ([4], Proposition 1.2 and 1.3). Thus $\mathrm{UR} \Rightarrow \mathrm{UM}$ and $\mathrm{R} \Rightarrow \mathrm{STM}$.

We will call X order smooth, in abbreviation (o)-Sm, if for each $x \in S\left(X_{+}\right)$(the positive part of the unit sphere in X) and each order interval $\left[u^{*}, v^{*}\right] \subset \partial_{+}\|x\|$ there holds $u^{*}=v^{*}$, where $\partial_{+}\|x\|=\left\{x^{*} \in S\left(X_{+}^{*}\right):\left\langle x, x^{*}\right\rangle=\|x\|\right\}$.

The strongest notion of smoothness of X is the order uniform smoothness, in abbreviation (o)-USm. We say X to be (o)-USm if $\rho_{X}(\tau) / \tau \rightarrow 0$, whenever $\tau \searrow 0$, where the modulus of smoothness $\rho_{X}(\tau)$ is defined as follows:

$$
\rho_{X}(\tau)=\sup \{\|x \vee \tau y\|-1: 0 \leq x, y,\|x\|=1,\|y\|=1\} \quad(\tau \in[0,1]) .
$$

Lemma

For all $\epsilon, \tau \in[0,1]$ the following inequalities hold true
(i) $0 \leq \alpha_{X}(\epsilon) \leq \delta_{X}(\epsilon) \leq \epsilon$,
(ii) $0 \leq \rho_{X}(\tau) / \tau \leq \beta_{X}(\tau) / \tau \leq 1$.

By $\alpha_{X}(\epsilon)$ and $\beta_{X}(\tau)$ we mean the modulus of the uniform rotundity (cf. [4], Proposition 1.2) and the modulus of smoothness $(0 \leq \epsilon, \tau)$:

$$
\begin{gathered}
\alpha_{X}(\epsilon)=\inf \{1-\|x \pm y\|:\|x\|=1,\|y\| \geq \epsilon\} \\
\beta_{X}(\tau)=\sup \left\{\frac{\|x+\tau y\|+\|x-\tau y\|}{2}-1:\|x\|=1,\|y\|=1\right\} .
\end{gathered}
$$

Corollary

(a) If X is $U R$ (resp. USm) then X is UM (resp. (o)-USm). (b) If X is an R (i.e. rotund) space (resp. Sm space, i.e. smooth) then X is a STM space (resp. (o)-Sm space).

Recall (cf. [4]) that any UM Banach lattice X is a KB space (i.e. the norm is order continuous and X is monotonically complete).
Example: It follows easily from the definitions that $\delta_{L_{1}}(\epsilon) \equiv \epsilon, \rho_{L_{\infty}}(\tau) \equiv 0$. However $\delta_{L_{\infty}}(\epsilon) \equiv 0$ but $\rho_{L_{1}}(\tau) \equiv \tau$. Roughly speaking the space L_{1} is the best (worst) UM (resp. (o)-USm) space and the space L_{∞} is the best (worst) (o)-USm (resp. UM) space since the respective modules attain their bounds.

2. (o)-Smoothness and strict monotonicity

The following theorem is true also for normed lattices.

Theorem 1

Let X be a Banach lattice with the dual X^{*}. Then
(a) if X^{*} is a STM space then X is (o)-Sm space,
(b) if X^{*} is (o)-Sm space then X is a STM space,

If moreover X is reflexive then the converse implications are also true.
Proof. (a) If X is not (o)-Sm then there exists a proper (order) interval $\left[u^{*}, v^{*}\right] \subset$ $\partial_{+}\|x\|$. Hence in particular $0<u^{*}<v^{*}$ and $\left[u^{*}, v^{*}\right] \subset S\left(X_{+}\right)$i.e. X^{*} is not STM space which proves (a).
(b). Let X^{*} be (o)-Sm space but X is not STM, i.e. $\|x\|=\|x-y\|$ for some y and $x \in S\left(X_{+}\right)$such that $0<y<x$. There exists a positive functional $x^{*} \in X^{*}$ satisfying $\left\langle x-y, x^{*}\right\rangle=\|x-y\|$. Hence we conclude that also $\left\langle x, x^{*}\right\rangle=\|x\|$. Let $u=x-y$. Denoting the canonical injections of x and u into $X^{* *}$ by $\hat{\mathrm{x}}$ and $\hat{\mathrm{u}}$, respectively, we obtain finally that the proper interval $[\hat{\mathrm{u}}, \hat{\mathrm{x}}] \subset \partial_{+}\left\|x^{*}\right\|$, a contradiction with the (o)-Sm of X^{*}.

The converse implications for X reflexive are now clear.
In the following we will try to explain the meaning of the (o)-Sm by means of the behavior of the function $t \rightarrow \eta(t)(t>0)$, where

$$
\eta(t)=\frac{\|x \vee t y\|-\|x\|}{t} \quad(x, y \geq 0, t>0) .
$$

Lemma

The function $t \rightarrow\|x \vee t y\|$ is convex and the function $\eta(t)$ is nonnegative and nondecreasing for $t>0$.

Proof. Applying the formula $x \vee t y=\frac{1}{2}(x+t y+|x-t y|)$ the convexity of the function $\|x \vee t y\|$ easily follows. Now the standard reasoning yields the second assertion.

As a corollary it follows that $\eta=\lim _{t \backslash 0} \eta(t)=\inf _{t>0} \eta(t)$ exists and the limit η is finite and nonnegative.

Now we will prove the basic duality formula relating the notion of the (o)smoothness with the behavior of divided difference of special kind.

Theorem 2

Let x, y be arbitrary in $S\left(X_{+}\right)$. The following duality formula holds true:

$$
\begin{equation*}
\left.\inf _{t>0} \frac{\|x \vee t y\|-\|x\|}{t}=\sup _{x^{*}, y^{*} \in \partial\|x\|, 0 \leq y^{*} \leq x^{*}}\left(<y, x^{*}-y^{*}\right\rangle\right) \tag{1}
\end{equation*}
$$

where the "sup" on the right side is attained.
Proof. First we will prove the inequality " \leq ". Let $x, y \in S\left(X_{+}\right)$be arbitrary. In virtue of Lemma above the function $t \rightarrow \eta(t)$ is nondecreasing and nonnegative. Next, for the function $\eta(t)$ we have (cf. [1] pp. 55 and 175):

$$
\eta(t)=\sup _{x^{*} \in S\left(X_{+}^{*}\right)} \sup _{\left(x^{*} \geq y^{*} \geq 0\right)}\left\{<y, x^{*}-y^{*}>+\frac{1}{t}\left(<x, y^{*}>-1\right)\right\},
$$

and $\eta=\lim _{t \backslash 0} \eta(t)$. Hence there exist nets $\left(t_{\alpha}\right),\left(x_{\alpha}^{*}\right),\left(y_{\alpha}^{*}\right)$ such that $t_{\alpha} \searrow 0$, $x_{\alpha}^{*} \in S\left(X_{+}^{*}\right), 0 \leq y_{\alpha}^{*} \leq x_{\alpha}^{*}$ and

$$
\left.<y, x_{\alpha}^{*}-y_{\alpha}^{*}>+\frac{1}{t_{\alpha}}\left(<x, y_{\alpha}^{*}\right\rangle-1\right) \longrightarrow \eta .
$$

Since the first term is bounded and $t_{\alpha} \searrow 0$ we conclude that $\left\langle y, y_{\alpha}^{*}>\rightarrow 1\right.$ and therefore $<x, y_{\alpha}^{*}>\rightarrow 1$. Since $S\left(X_{+}^{*}\right)$ is weakly* compact there exist $x^{*} \in S\left(X_{+}^{*}\right)$ and y^{*} with $0 \leq y^{*} \leq x^{*}$ such that $x_{\beta}^{*} \rightarrow x^{*}$ and $y_{\beta}^{*} \rightarrow y^{*}$ weakly* for a subnet (β). Hence $\left.\left\langle x, x^{*}\right\rangle=<x, y^{*}\right\rangle=\|x\|$ and consequently $x^{*}, y^{*} \in \partial\|x\|, 0 \leq y^{*} \leq x^{*}$. Passing now to the limit above we see that with these x^{*} and y^{*} there holds

$$
\inf _{t>0} \frac{\|x \vee t y\|-\|x\|}{t}=<y, x^{*}-y^{*}>,
$$

and the inequality " \leq " follows.
To prove the inequality " \geq " let us confine with the supremum in the formula for $\eta(t)$ to $x^{*}, y^{*} \in \partial\|x\|$ such that $x^{*} \geq y^{*} \geq 0$. Then $\left\langle x, y^{*}\right\rangle=1$ and the desired inequality follows which concludes the proof.

We will relate the smoothness with the (o)-smoothness. Let $f(x)=\|x\|$ and $f_{+}(x, y)$ be the directional derivative of f at x in the direction y. It is a well known fact in convex analysis that $f_{+}(x, y)=\max \left\{<y, x^{*}>: x^{*} \in \partial\|x\|\right\}$. For the left directional derivative we have $-f_{+}(x,-y)=\min \left\{\left\langle y, x^{*}\right\rangle: x^{*} \in \partial\|x\|\right\}$.

Corollary

If x in $S\left(X_{+}\right)$is a smooth point then it is an (o)-smooth point. More precisely if $x \in S\left(X_{+}\right)$and $y \geq 0$ then

$$
\left.f_{+}(x, y)+f_{+}(x,-y) \geq \max _{x^{*}, y^{*} \in \partial\|x\|, 0 \leq y^{*} \leq x^{*}}\left(<y, x^{*}-y^{*}\right\rangle\right) \geq 0 .
$$

Moreover $x \in S\left(X_{+}\right)$is an (o)-smooth point if and only if $X_{+} \perp\left(\partial_{+}\|x\|\right.$ $\left.-\partial_{+}\|x\|\right)$, where $y \perp x^{*}$ means that $\left\langle y, x^{*}\right\rangle=0$.

Example: Any point $x \in S\left(l_{\infty}^{2}\right), x \geq 0$, is an (o)-smooth point (in fact this space is (o)-USm). Indeed, it suffices to consider the extreme point $x=(1,1)$ only. In this case $\partial_{+}\|x\|$ can be identified with the positive part of the unit sphere in l_{1}^{2} which does not contain any order interval (the coordinatewise ordering is considered).

On the other hand the space l_{1}^{2} is not (o)-smooth. Indeed, a point $x=(0,1)$ has $\partial_{+}\|x\|$ containing an order interval $\left[y^{*}, x^{*}\right]\left(x^{*}=(1,1), y^{*}=(0,1)\right)$ which is the largest possible.

3. Uniform properties and duality

In this paragraph Lindenstrauss type duality formulas relating the modulus of uniform monotonicity $\delta_{X}(\epsilon)$ and the modulus of (o)-uniform smoothness ((o)-USm) $\rho_{X}(\tau)$ are proved and the main duality theorem is derived.

Let us first observe that $\rho_{X}(\tau) \leq \rho_{X^{* *}}(\tau)$ and $\delta_{X}(\epsilon) \geq \delta_{X^{* *}}(\epsilon)(\epsilon, \tau \in[0,1])$.

Theorem 3

Let x, y be arbitrary in $S\left(X_{+}\right)$. The following duality formulas hold true:
(a) $\rho_{X}(\tau)=\rho_{X^{* *}}(\tau)$,
(b) $\delta_{X}(\epsilon)=\delta_{X^{* *}}(\epsilon)$ and
(c) $\rho_{X^{*}}(\tau)=\sup _{0 \leq \epsilon \leq 1}\left(\epsilon \tau-\delta_{X}(\epsilon)\right)$,
(d) $\delta_{X}(\epsilon)=\sup _{0 \leq \tau \leq 1}\left(\tau \epsilon-\rho_{X^{*}}(\tau)\right)$
where $\epsilon, \tau \in[0,1]$.

Proof. (c). Let $x^{*}, y^{*} \in S\left(X_{+}^{*}\right)$ be arbitrary but fixed, $\tau \in[0,1]$ and $x \in S\left(X_{+}\right)$. Then

$$
\begin{aligned}
<x, x^{*} \vee \tau y^{*}>-1 & =\sup _{x \geq u \geq 0}\left(<x-u, x^{*}>+\tau<u, y^{*}>\right)-1 \\
& \leq \sup _{x \geq u \geq 0}\left(\|x-u\|+\tau\left\|y^{*}\right\|\|u\|\right)-1 \\
& \leq \sup _{(0 \leq \epsilon \leq 1)} \sup _{(0 \leq u \leq x,\|x\|=1,\|u\| \geq \epsilon)}(\|x-u\|-1+\tau \epsilon) \\
& =\sup _{0 \leq \epsilon \leq 1}\left(\tau \epsilon-\delta_{X}(\epsilon)\right) .
\end{aligned}
$$

Now, passing to the "sup" over $x \in S\left(X_{+}\right)$and then over $x^{*}, y^{*} \in S\left(X_{+}^{*}\right)$ we get

$$
\begin{equation*}
\rho_{X^{*}}(\tau) \leq \sup _{0 \leq \epsilon \leq 0}\left(\tau \epsilon-\delta_{X}(\epsilon)\right) . \tag{2}
\end{equation*}
$$

Now, let $\epsilon \in[0,1]$, and fix $x \in S\left(X_{+}\right)$and u such that $0 \leq u \leq x$. Then there exist $x^{*}, y^{*} \in S\left(X_{+}^{*}\right)$ such that $\left\langle x-u, x^{*}\right\rangle=\|x-u\|$ and $\left\langle u, y^{*}\right\rangle=\|u\|$. Hence for $\tau \in[0,1]$

$$
\begin{aligned}
\rho_{X^{*}}(\tau) & \geq\left\|x^{*} \vee \tau y^{*}\right\|-1 \\
& \geq<x, x^{*} \vee \tau y^{*}>-1 \\
& =\sup _{0 \leq y \leq x}\left(<x-y, x^{*}>+\tau<y^{*}, y^{*}>\right)-1 \\
& \geq\|x-u\|+\tau\|u\|-1 \geq \tau \epsilon-(1-\|x-u\|) .
\end{aligned}
$$

Now, passing to the supremum over x and u indicated and then over $\epsilon \in[0,1]$, we obtain

$$
\begin{equation*}
\rho_{X^{*}}(\tau) \geq \sup _{0 \leq \epsilon \leq 1}\left(\tau \epsilon-\delta_{X}(\epsilon)\right) . \tag{3}
\end{equation*}
$$

Collecting (2) and (3) the property (c) follows.
To prove (b) we will estimate $\delta_{X}(\epsilon)$ from below. First in virtue of (c)

$$
\begin{equation*}
\delta_{X}(\epsilon) \geq \sup _{0 \leq \tau \leq 1}\left(\epsilon \tau-\sup _{\left(x^{*}, y^{*}\right) \in S(\tau)}\left(\left\|x^{*} \vee y^{*}\right\|-1\right)\right) \tag{4}
\end{equation*}
$$

for all $\epsilon \in[0,1]$, where $S(\tau)=\left\{\left(x^{*}, y^{*}\right): x^{*}, y^{*} \geq 0,\left\|x^{*}\right\|=1,\left\|y^{*}\right\| \leq \tau\right\}$.
Let $\epsilon, \eta, \tau \in(0,1]$ be arbitrary. For each $\left(x^{*}, y^{*}\right) \in S(\tau)$ there exists $x \in S\left(X_{+}\right)$ such that

$$
\begin{equation*}
\left\|x^{*} \vee y^{*}\right\| \leq<x, x^{*} \vee y^{*}>+\eta \tag{5}
\end{equation*}
$$

Denote $A_{\epsilon}=\{(x, y): 0 \leq y \leq x,\|y\| \leq \epsilon\}$ and $B_{\epsilon}=\{(x, y): 0 \leq y \leq x, \|$ $y \| \leq \epsilon\}$. Given $x^{*}, y^{*} \in S(\tau)$ we have

$$
\begin{aligned}
&<x, x^{*} \vee y^{*}>-1\left.=\sup _{0 \leq y \leq x}\left(<x-y, x^{*}\right\rangle+<y, y^{*}>\right)-1 \\
& \leq \max _{\sup _{A_{\epsilon}}(\|x-y\|-1+\tau\|y\|),} \\
&\left.\quad \sup _{B_{\epsilon}}(\|x-y\|-1+\tau\|y\|)\right\} \\
& \leq \max \left\{\tau \epsilon,-\delta_{X}(\epsilon)+\tau\right\} \\
& \leq \tau \epsilon-\delta_{X}(\epsilon)+\tau .
\end{aligned}
$$

Hence with x^{*}, y^{*} and x as above, from (4) and (5) it follows that

$$
\begin{aligned}
\delta_{X}(\epsilon) & \geq \sup _{0 \leq \tau \leq 1}\left\{\epsilon \tau-\rho_{X^{*}}(\tau)\right\} \\
& \geq \tau \epsilon-\left(<x, x^{*} \vee y^{*}>-1+\eta\right) \\
& =\delta_{X}(\epsilon)-\tau-\eta .
\end{aligned}
$$

Since η and τ were arbitrary in (0,1$]$ we get the equality in (4) for each $\epsilon \in(0,1]$ as desired. The case $\epsilon=0$ is obvious in virtue of $\left.\rho_{(}(\tau) X^{*}\right) \leq \tau$ and $\delta_{X}(0)=0$.

To prove (a) it suffices to prove that $\rho_{X}(\tau) \geq \rho_{X^{* *}}(\tau)$. For this let $x^{*}, y^{*} \in X_{+}$ be such that $\left\|x^{*}\right\|=1,0 \leq y^{*} \leq x^{*}, 0 \neq y^{*}$ and let $\eta \in(0,1]$. Then there exist $x, y \in S\left(X_{+}\right)$such that

$$
\begin{equation*}
\left\|x^{*}-y^{*}\right\| \leq<x, x^{*}-y^{*}>+\eta \text { and }\left\|y^{*}\right\| \leq<y, y^{*}>+\eta . \tag{6}
\end{equation*}
$$

With these x, y, x^{*}, y^{*} and η we have

$$
\begin{aligned}
\rho_{X}(\tau) & \geq\|x \vee \tau y\|-1 \\
& \geq<x \vee \tau y, x^{*}>-1 \\
& =\sup _{0 \leq y^{*} \leq x^{*}}\left(<x, x^{*}-y^{*}>+\tau<y, y^{*}>\right)-1 \\
& \geq<x, x^{*}-y^{*}>+\tau<y, y^{*}>-1 \\
& \geq\left\|x^{*}-y^{*}\right\|-\eta+\tau\left(\left\|y^{*}\right\|-\eta\right)-1 .
\end{aligned}
$$

Taking the supremum over x^{*}, y^{*} indicated we get

$$
\begin{aligned}
\rho_{X}(\tau) & \geq \sup _{0 \leq \epsilon \leq 1} \sup _{\left(\left\|x^{*}\right\|=1,0 \leq y^{*} \leq x^{*},\left\|y^{*}\right\|=\epsilon\right)}\left(\tau \epsilon+\left\|x^{*}-y^{*}\right\|-1\right)-2 \eta \\
& =\sup _{0 \leq \epsilon \leq 1}\left(\tau \epsilon-\delta_{X^{*}}(\epsilon)\right)-2 \eta=\rho_{X^{* *}}(\tau)-2 \eta .
\end{aligned}
$$

Since $\eta \in(0,1]$ was arbitrary we get the desired inequality and hence (a) follows.
Finally to prove (b) it suffices to apply (a) and (d) respectively:

$$
\begin{aligned}
\delta_{X^{* *}}(\epsilon) & =\sup _{0 \leq \tau \leq 1}\left(\tau \epsilon-\rho_{X^{* * *}}(\tau)\right) \\
& =\sup _{0 \leq \tau \leq 1}\left(\tau \epsilon-\rho_{X^{*}}(\tau)\right) \\
& =\delta_{X}(\epsilon)
\end{aligned}
$$

In the Proposition below we collect basic properties of the modules $\delta_{X}(\epsilon)$ and $\rho_{X^{*}}(\tau)$.

Proposition 4

The following properties hold true.
(a) $\delta_{X}(\epsilon) \equiv 0$ (resp. ϵ) if and only if $\rho_{X^{*}}(\tau) \equiv \tau$ (resp. 0).
(b) $\epsilon \tau \leq \delta_{X}(\epsilon)+\rho_{X^{*}}(\tau) \leq \epsilon+\tau$. Moreover, given $\epsilon, \tau \in[0,1]$ the equality on the right is attained if and only if $\delta_{X}(\epsilon)=\epsilon$ and $\rho_{X^{*}}(\tau)=\tau$.
(c) The functions $\delta_{X}(\epsilon), \rho_{X^{*}}(\tau)$ are convex (nonnegative) and continuous on the interval $[0,1]$ with $\delta_{X}(0)=\rho_{X}^{*}(0)=0$ and therefore nondecreasing.

Proof. (a) In virtue of Theorem $3(\mathrm{~d}), \delta_{X}(\epsilon)=0$ for all $\epsilon \in[0,1]$ implies that $\tau \epsilon \leq \rho_{X^{*}}(\tau) \leq \tau$ for all $\epsilon \in[0,1]$. Hence $\rho_{X^{*}}(\tau) \equiv 0$. To prove the converse implication we put in Theorem 3(d) $\rho_{X^{*}}(\tau) \equiv \tau$. Hence $\delta_{X}(\epsilon) \equiv 0$. The remaining cases follow in the same way so we omit their proofs.
(b) It was already stated that $0 \leq \delta_{X}(\epsilon) \leq \epsilon$ and $0 \leq \rho_{X^{*}}(\tau) \leq \tau$. Hence and from (d) in Theorem 3, (b) follows.
(c) From (c) and (d) in Theorem 3 it follows that the functions $\delta_{X}(\epsilon), \rho_{X^{*}}(\tau)$ are pointwise suprema of families of affine functions on the interval $(0,1)$. Therefore they are lsc and convex on $(0,1)$ and hence continuous and nondecreasing. From the definitions it follows that $\delta_{X}(0)=\rho_{X^{*}}(0)=0$ and consequently they are continuous at zero from the right. Since $\delta_{X}(1) \geq \delta_{X}(\epsilon)=\sup _{0 \leq \tau \leq 1}\left(\tau-\rho_{X^{*}}(\tau)-\tau(1-\epsilon)\right) \geq$ $\delta_{X}(1)+(1-\epsilon)$, we conclude that $\delta_{X}(\epsilon)$ is left continuous at 1 . The same reasoning applies to $\rho_{X^{*}}(\tau)$ so the proof is finished.

As a consequence of Theorem 3 we get the following duality theorem.

Theorem 5

Let X be a Banach lattice. Then
(a) X is UM (resp. (o)-USm) if and only if $X^{* *}$ is UM (resp. (o)-USm).
(b) X is UM if and only if X^{*} is (o)-USm.
(c) X^{*} is UM if and only if X is (o)-USm.

Proof. (a) This follows immediately from Theorem 3 ((a),(b)).
(b) If X^{*} is not an (o)-USm space then $\inf _{\tau>0} \rho_{X^{*}}(\tau) / \tau>\alpha$ for some $\alpha>0$, because the function $\tau \rightarrow \rho_{X^{*}}(\tau) / \tau$ is nondecreasing and continuous on (0,1] (apply the property of the function $\eta(t)$ from Sec. 2). Therefore

$$
\delta_{X}(\epsilon)=\sup _{0 \leq \tau \leq 1} \tau\left(\epsilon-\frac{\rho_{X^{*}}(\tau)}{\tau}\right) \leq \sup _{0 \leq \tau \leq 1} \tau(\epsilon-\alpha)=0
$$

whenever $0<\epsilon \leq \alpha$, i.e. X is not UM.
To prove the converse implication let X be not UM, i.e. $\delta_{X}\left(\epsilon_{0}\right)=0$ for some $\epsilon_{0} \in(0,1)$. Then

$$
\frac{\rho_{X^{*}}(\tau)}{\tau}=\sup _{0 \leq \epsilon \leq 1}\left(\epsilon-\frac{\delta_{X}(\epsilon)}{\tau}\right) \geq \epsilon_{0} \text { for } \tau \in(0,1]
$$

i.e. X^{*} is not (o)-USm. Collecting these all (b) follows.

Now let X^{*} be UM. From (b) $X^{* *}$ is then (o)-USm. Since X embeds as a closed sublattice (isometrically) into $X^{* *}$ we conclude that X is (o)-USm. To prove the converse let X be (o)-USm. Then in virtue of (a) $X^{* *}$ is (o)-USm and hence (using (b)) X^{*} is UM as desired. Thus (c) holds true and the proof is finished.

As a corollary we get the following applications of the notion of UM and (o)USm spaces.

Theorem 6

Let X be a Banach lattice. Then
(a) If X is UM then X is a KB -space.
(b) If X is (o)-USm then $X^{* *}$ is the band generated by X in $X^{* *}$.

Proof. (a) This is a known fact (cf. [2], Chap. XV, Theorem 21) so we omit the proof. (b) In virtue of Theorem 5 if X is (o)-USm then X^{*} is a UM-space. Now applying Theorem 2.4.14 from [8] we conclude that $X^{* *}$ is the band generated by X in $X^{* *}$.

Applying results from this section and characterizations of STM and UM Orlicz spaces for Luxemburg and Orlicz (in the Amemiya form, cf. [3], [7]) norm (see [4], [5], [3]), we derive in [7] characterizations of (o)-Sm and (o)-USm Orlicz spaces as well we obtain estimations for the modules $\delta_{X}(\epsilon), \rho_{X^{*}}(\tau)$.

4. An application to optimization

Let x be arbitrary but fixed on $S\left(X_{+}\right)$. Define a functional

$$
f_{x}(y)=\|x \vee y\|, \quad \text { where } y \in X \text { and } y \geq 0 .
$$

Clearly $f_{x}(y) \geq f_{x}(0)$ and $f_{x}(y) \geq f_{x}(x)$. Therefore the (order) interval $[0, x] \subset$ $P_{f_{x}}=\left\{y \in X: y \geq 0, f_{x}(0)=\|x \vee y\|\right\}$.
Definition. Let x be fixed as above. We say that $P_{f_{x}}$ is a set of solutions of the optimization problem:

$$
\left\{\begin{array}{l}
f_{x}(y) \longrightarrow \min \\
y \geq 0 .
\end{array}\right.
$$

As a corollary from Theorem 2 we get a criterion for potential members of $P_{f_{x}}$.

Theorem 7

A necessary condition for $u \in P_{f_{x}}$ is

$$
\max _{x^{*}, y^{*} \in \partial\|x\|, 0 \leq y^{*} \leq x^{*}}<u, x^{*}-y^{*}>=0 .
$$

This condition is trivially satisfied if x is an (o)-Sm point, i.e. $\partial\|x\| \cap X_{+}^{*}$ contains no proper order interval.

Example: Let us consider the space l_{1} and let $x=\left(x_{n}\right)$ be in $S\left(l_{1}\right)$ with $x_{n} \geq 0$. Let $x^{*} \geq y^{*} \geq 0$ where $x^{*}=\left(\alpha_{n}\right), y^{*}=\left(\beta_{n}\right)$ are from $\partial\|x\|$. Thus $\bigvee_{n} \alpha_{n}=1$ and $\bigvee_{n} \beta_{n}=1$ with $\alpha_{n} \geq \beta_{n} \geq 0$. Hence, in particular, $x_{n}\left(\alpha_{n}-\beta_{n}\right)=0$ for all n. Let $y=\left(y_{n}\right)$ be nonnegative such that $\left\langle y, x^{*}-y^{*}>=0\right.$. Hence if follows $y_{n}\left(\alpha_{n}-\beta_{n}\right)=0$ for all n . Consequently the supports of x^{*} and y^{*} are the same: $\operatorname{supp}_{n}\left(x_{n}\right)=\operatorname{supp}_{n}\left(y_{n}\right)$. In fact we have a little more. Namely $y=\left(y_{n}\right)$ is in $P_{f_{x}}$ if $y_{n} \in\left[0, x_{n}\right]$ for all n, since $x \vee y=\left(x_{n} \vee y_{n}\right)$ and $\|x \vee y\|=\|x\|$.

In the theorem below full characterization of elements $y \in P_{f_{x}}$ is given.

Theorem 8

Let $x \in S\left(X_{+}\right)$be fixed and let $y \geq 0$. The following statements are equivalent.
(a) $y \in P_{f_{x}}$.
(b) There exists $x^{*} \in X_{+}^{*}$ such that
(i) $\left\|x^{*}\right\|=1$ and $\left\langle x, x^{*}\right\rangle=\|x\|$,
(ii) $\left\langle x \vee y, x^{*}>=\|x \vee y\|\right.$,
(iii) $\forall_{\left(0 \leq y^{*} \leq x^{*}\right)}<y-x, y^{*}>\leq 0$.

Proof. $(\mathrm{a}) \Rightarrow(\mathrm{b})$. There exists $x^{*} \in S\left(X_{+}^{*}\right)$ such that $<x, x^{*}>=\|x\|$. Now, applying (a), we obtain

$$
\begin{aligned}
\|x\|=\|x \vee y\| & \geq<x \vee y, x^{*}> \\
& =\sup _{0 \leq y^{*} \leq x}\left(<x, x^{*}-y^{*}>+<y, y^{*}>\right) \\
& =<x, x^{*}>+\sup _{0 \leq y^{*} \leq x}<y-x, y^{*}> \\
& =\|x\|+\sup _{0 \leq y^{*} \leq x}<y-x, y^{*}>
\end{aligned}
$$

Hence (b)(ii)-(iii) follow.
$(\mathrm{a}) \Leftarrow(\mathrm{b})$. We have to prove that for $y \geq 0$ satisfying (b) there holds $\|x \vee y\|=$ $\|x\|$. In virtue of (b)

$$
\begin{aligned}
\|x \vee y\| & =<x \vee y, x^{*}> \\
& =\sup _{0 \leq y^{*} \leq x}\left(<x, x^{*}-y^{*}>+<y, y^{*}>\right) \\
& =<x, x^{*}>+\sup _{0 \leq y^{*} \leq x}<y-x, y^{*}>=\|x\|
\end{aligned}
$$

which finishes the proof.

References

1. C. Aliprantis, O. Burkinshaw, Positive Operators, Academic Press Inc., 1985.
2. G. Birkhoff, Lattice Theory, Providence, RI, 1967.
3. H. Hudzik, W. Kurc, Monotonicity of Musielak-Orlicz spaces equipped with the Orlicz norm (to appear).
4. W. Kurc, Strictly and uniformly monotone Musielak-Orlicz spaces and applicatios to best approximation, Journal of Approximation Theory 69(2), (1962), 173-187.
5. W. Kurc, Strictly and uniformly monotone sequential Musielak-Orlicz spaces (to appear).
6. W. Kurc, Extreme points of the unit ball in Orlicz spaces of vector-valued functions with the Amemiya norm, Mathematica Japonica 38(2), (1993), 277-288.
7. W. Kurc, Musielak-Orlicz spaces with order smooth norms, (to appear).
8. P. Nieberg, Banach Lattices, Springer Verlag, 1991.
