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Abstract

Towards a constructive method to determine an L∞-conductivity from
the corresponding Dirichlet to Neumann operator, we establish a Fred-
holm integral equation of the second kind at the boundary of a two
dimensional body. We show that this equation depends directly on
the measured data and has always a unique solution. This way the
geometric optics solutions for the L∞-conductivity problem can be de-
termined in a stable manner at the boundary and outside of the body.

1. Introduction

Calderón’s inverse conductivity problem is to determine the coefficients
of an elliptic differential equation from the corresponding boundary data,
i.e. from the Dirichlet to Neumann operator. More precisely, suppose
that Ω ⊂ Rn is a bounded domain with connected complement and
σ : Ω → (0,∞) is measurable and bounded away from zero and infinity.
Let u ∈ H1(Ω) be the unique solution to

∇ · σ∇u = 0 in Ω, (1.1)

u
∣∣
∂Ω

= φ ∈ H1/2(∂Ω). (1.2)
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The inverse conductivity problem is to recover σ from the map

Λσ : φ 7→ σ
∂u

∂ν

∣∣∣
∂Ω
.

Here ν is the unit outer normal to the boundary and the derivative
σ∂u/∂ν exists as an element of H−1/2(∂Ω), defined by〈

σ
∂u

∂ν
, ψ

〉
=

∫
Ω

σ∇u · ∇ψ dm, (1.3)

where ψ ∈ H1(Ω) and dm denotes the Lebesgue measure.
In a recent work we presented a solution to this problem in two di-

mensions, for details see [2]. The proof made strong use of the so called
geometric optics solutions to (1.1). These have the special asymptotics

u(z) = uk(z) = eikz

(
1 +O

(
1
z

))
as |z| → ∞ (1.4)

at infinity. Here k is a complex parameter. Since these solutions are
globally defined we need to extend σ to the whole plane by setting σ(z) ≡
1 for z /∈ Ω.

The starting point towards Calderón problem is to show that Λσ

determines firstly the values of uk on ∂Ω and hence in the complement
C \Ω and secondly, it determines a scattering coefficient or the so called
non- linear Fourier transform τµ(k). Using these quantities it was then
shown that Λσ determines the solutions uk also inside Ω, and this readily
determines the coefficient σ, see [2].

In the present paper we continue this work and give a constructive
method for finding the boundary values of the geometric optics solutions
uk, directly from the Dirichlet to Neumann operator. For this purpose
it is natural to seek for an integral equation on the boundary of the
domain, depending on σ only through Λσ, that will yield the boundary
values of the geometric optics solutions. In the smooth case this was
done in [4] for dimensions three and higher and in [3] for the dimension
two. Here we establish for L∞-conductivities in the plane a natural but
somewhat different integral equation than in [3]. This approach will
also describe a constructive method for determining the transform τµ(k)
directly from Λσ.

For simplicity, we assume that σ ≡ 1 near the boundary of Ω and we
give the proof in the case Ω = D, the unit disk D = {z : |z| < 1}. To
explain the results in detail recall first from [2] that it is convenient to
replace (1.1) by an equivalent first order system. In the complex notation
we may write f = u+ iv, so that the system obtains the form

∂f = µ∂f, (1.5)
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where µ = (1− σ)/(1 + σ). In particular, note that µ is real valued and
that (1.5) is only R-linear. The assumptions for σ imply that ‖µ‖L∞ ≤
κ < 1. Furthermore, the “conjugate” function v is obtained from the
identity

∂T v (z) = Λσu (z), z ∈ ∂D.

In brief, we are now looking for a solution f = fµ to (1.5) with the
asymptotics

fµ(z, k) = eikz (1 +O(1/z)) as |z| → ∞. (1.6)

This approach leads naturally to the concept of the µ-Hilbert trans-
form Hµ : H1/2(∂D) → H1/2(∂D) defined by

Hµu = v.

That is, the tangential derivative gives

∂THµu = Λσu (1.7)

and thus basically the µ-Hilbert transform is just a reformulation of the
Dirichlet-to-Neumann operator Λσ.

In case σ ≡ 1, or µ ≡ 0, we have Hµ = H0, the usual Hilbert
transform on the unit circle. This is a singular integral operator with
Fourier multiplier m(ξ) = −iξ/|ξ| for ξ ∈ Z \ {0} and m(0) = 0, so that

Ĥ0g(ξ) = m(ξ)ĝ(ξ), g ∈ L2(∂D).

The Hilbert transform H0 determines the Riesz projections onto the
Hardy spaces on ∂D,

P0g =
1
2
(I + iH0)g +

1
2

�
∫

∂D
g ds,

where

�
∫

∂D
g ds =

1
2π

∫
∂D
g ds.

Similarly the new Hilbert transforms determine the projections

Pµg =
1
2
(I + iHµ)g +

1
2

�
∫

∂D
g ds, (1.8)

and in fact, the range of Pµ consists of functions analytic with respect
to a new complex structure determined by σ. For an explicit description
see Section 2. Note also that we use slightly different notations than
in [2].
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Finally we need to conjugate the projections with the exponential
functions and set

Pk
µ(g)(z) = eikzPµ(e−ik ·g)(z), g ∈ H1/2(∂D). (1.9)

With these notations the main theorem of this paper reads as

Theorem 1.1

Assume that supp(µ) ⊂ D. Then

a) For each k ∈ C the operator I−
(
Pµ + Pk

0

)
is invertible on H1/2(∂D).

b) The function f = fµ from the equations (1.5) and (1.6) satisfies on
the boundary the singular integral equation

f(z) + eikz = (Pµ + Pk
0 )f (z), z ∈ ∂D. (1.10)

In fact, we prove that the operator I −
(
Pµ + Pk

0

)
is a Fredholm

operator with index zero. By (1.7) and (1.8) this Fredholm operator
depends explicitly on the Dirichlet-to-Neumann operator Λσ.

The methods we will use are complex analytic, but it turns out that
the outcome, and the operator Pµ in particular, is R- linear. Moreover,
in (1.10) the dependence on µ or σ arises only through this operator.
It is natural to write this R-linear operator in the vector formulation,
under the identification R2 = C, and then the µ-dependence is even more
explicit,

Pµ(f) =
1
2

(
I + L (Hµ + L)−1 − L
Hµ I + L

) (
u
v

)
, f = u+ iv (1.11)

where

L(g) = �
∫

∂D
g ds

is the average operator.
The solution fµ ∈ H1

loc(C) to (1.5) and (1.6) exists and is unique
by [2, Theorem 4.2]. Furthermore, fµ is locally Hölder continuous and
analytic outside the disk D. Writing fµ = eikzmµ, the factor mµ has the
development

mµ(z) = mµ(z, k) = 1 +
a1(k)
z

+
a2(k)
z2

+ · · · as |z| → ∞. (1.12)

Thus it follows that the Fredholm equation (1.10) determines the solu-
tions fµ(z, k) for |z| ≥ 1 and k ∈ C. Finally, this information determines
also τµ, the non-linear Fourier transform of µ; see Section 4.
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2. Projections and Hilbert transforms

We will use the complex analytic approach with the corresponding no-
tations. In particular, we let ∂ = 1

2 (∂x− i∂y) and ∂ = 1
2 (∂x + i∂y); when

clarity requires we write ∂ = ∂z or ∂ = ∂z.
Let us begin by explaining the equivalence of the equations (1.1) and

(1.5). If u ∈ H1(Ω) is a real solution of (1.1) then there exists a real
function v ∈ H1(Ω), called the σ-harmonic conjugate of u, such that
f = u+ iv satisfies the R- linear Beltrami equation

∂f = µ∂f, (2.1)

where µ = (1− σ)/(1 + σ). Indeed, we have the following simple lemma.

Lemma 2.1
Assume u ∈ H1(D) is real valued and satisfies the conductivity equa-

tion (1.1). Then there exists a function v ∈ H1(D), unique up to a
constant, such that f = u+ iv satisfies the R-linear Beltrami equation

∂f = µ∂f, (2.2)

where µ = (1− σ)/(1 + σ).
Conversely, if f ∈ H1(D) satisfies (2.2) with a R-valued µ, then

u = Re f and v = Im f satisfy

∇ · σ∇u = 0 and ∇ · 1
σ
∇v = 0, (2.3)

respectively, where σ = (1− µ)/(1 + µ).

Proof. Denote by w the vectorfield

w = (−σ∂2u, σ∂1u) ∈ L2(D)

where ∂1 = ∂/∂x and ∂2 = ∂/∂y for z = x+ iy ∈ C. Then by (1.1) the
integrability condition ∂2w1 = ∂1w2 holds for the distributional deriva-
tives. Therefore there exists v ∈ H1(D), unique up to a constant, such
that

∂1v = −σ∂2u (2.4)

∂2v = σ∂1u. (2.5)

It is a simple calculation to see that this is equivalent to (2.2). �

Since the function v in Lemma 2.1 is defined only up to a constant
we will normalize it by assuming

L(v) = �
∫

∂D
v ds = 0. (2.6)
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This way we obtain a unique mapHµ : H1/2(∂D) → H1/2(∂D) by setting

Hµ : u
∣∣
∂D 7→ v

∣∣
∂D. (2.7)

The function v satisfying (2.4), (2.5) and (2.6) is called the σ-harmonic
conjugate of u and Hµ the Hilbert transform corresponding to equation
(2.2) or, in brief, the µ-Hilbert transform.

To connect the Hilbert transforms to the Dirichlet to Neumann op-
erators, we show that

∂THµ(u) = Λσ(u). (2.8)

Indeed, choose the counter clock-wise orientation for ∂D and denote by
∂T the tangential (distributional) derivative on ∂D corresponding to this
orientation. By the definition of Λσ we have∫

∂D
ϕΛσu ds =

∫
D
∇ϕ · σ∇u dm, ϕ ∈ C∞(D).

Thus, by (2.4), (2.5) and integration by parts, we get∫
∂D
ϕΛσu =

∫
D

(∂1ϕ∂2v − ∂2ϕ∂1v) dm

= −
∫

∂D
v∂Tϕ ds

and we see that (2.8) holds in the weak sense.
So far we have only defined Hµ(u) for real-valued u. Note that here

v = Hµ(u) is the real part of the function g = −if satisfying ∂g = −µ∂g.
Therefore it is natural to set

Hµ(iv) = iH−µ(v) (2.9)

and thus extend the definition of Hµ(g) to all C-valued g ∈ H1/2(∂D).
However, Hµ(g) remains only R- linear. Moreover, we have

Hµ ◦ H−µ u = H−µ ◦ Hµ u = −u+ �
∫

∂D
u ds. (2.10)

Lastly, in analogy with the Riesz projections we define the operator
Pµ : H1/2(∂D) → H1/2(∂D),

Pµ g =
1
2
(I + iHµ)g +

1
2

�
∫

∂D
g ds. (2.11)

Since with (2.10) we have H−µ − L = −(Hµ + L)−1 the formula (1.11)
follows by taking the real and imaginary parts of the identity (2.11).

The subject of this paper is to understand the projection operators
Pµ and in particular to show that even if µ and µ̃ were far apart the
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projections Pµ and Pµ̃ are always close to each other. For instance their
difference is shown to be a compact operator, and this fact will play a
central role in the proof of the Fredholm properties of Theorem 1.1.

We begin with the simple

Lemma 2.2

The operator Pµ is a projection, that is P2
µ = Pµ. Moreover, if

g ∈ H1/2(∂D), the following conditions are equivalent,

a) g = f
∣∣
∂D, where f ∈ H1(D) and satisfies (2.2);

b) Pµ(g) = g.

Proof. That P2
µ = Pµ follows immediately from (2.9) and (2.10). Let

then g = u+ iv ∈ H1/2(∂D). Taking separately the real and imaginary
parts from (2.11) we see that Pµ(g) = g if and only if

v = Hµu+
1
2π

∫
∂D
v ds

and
u = −H−µv +

1
2π

∫
∂D
u ds;

in view of (2.10) these last equations are actually equivalent.
By definition of the Hilbert transforms, v = Hµu+ C0 if and only if

u+ iv extends to D as a solution to (2.2). �

With the above lemma we see that the range of Pµ consists of the
boundary values of the solutions to the equation ∂f = µ∂f . This is
in complete analogy with the case µ ≡ 0 where P0 is the projection to
the boundary values of functions analytic in the disk, that is boundary
values of the solutions to the equation ∂f = 0.

The subspace complementary to range (Pµ) admits an equally simple
projection,

Qµg =
1
2
(I − iHµ)g − 1

2
�
∫

∂D
g ds. (2.12)

Since clearly
Pµ +Qµ = I (2.13)

the above identity (2.12) does define a projection with range equal to
ker(Pµ). This could, of course, be verified also by a direct calculation as
in Lemma 2.2.

By the definitions of the Hilbert transforms and the average opera-
tor we have LHµ = HµL = 0 on H1/2(∂D). Thus the formulae (2.11)
and (2.12) give

PµL = L = LPµ and QµL = 0 = LQµ. (2.14)
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In addition, as for the Riesz projections P0, Q0 the projection operators
Pµ and Qµ are complex conjugate to each other, up to a constant term.

Lemma 2.3
For each g ∈ H1/2(∂D) we have

Pµ(g) = Qµ(g) + L(g).

Proof. The property (2.9) shows that

Hµ(u− iv) = Hµ(u) + iH−µ(v) = Hµ(u+ iv).

Therefore

Pµ(g) =
1
2
g− i

2
Hµ(g)+

1
2
L(g) = Qµ(g)+L(g). �

We next turn to the compactness arguments.

Lemma 2.4
Suppose supp(µ) ⊂ D. Then there exists a compact operator

Kµ : H1/2(∂D) → H1/2(∂D) such that the equation

g = P0(g) +Kµ(g)

holds for all those g ∈ H1/2(∂D) that satisfy Pµ(g) = g.

Proof. Suppose g ∈ H1/2(∂D) and Pµ(g) = g. Then using Lemma 2.2
we can extend g to D so that

∂g = µ∂g and g ∈ H1(D). (2.15)

In particular, since supp(µ) ⊂ B(0, r) for some 0 < r < 1,

P0g (z) =
∞∑

n=0

ĝ(n)zn and Q0g (z) =
∞∑

n=1

ĝ(−n)z−n

are analytic for |z| < 1 and r < |z|, respectively. It follows that the
function

G(z) =
{
g(z)− P0g (z), |z| < 1
Q0g (z), r < |z| (2.16)

is a well defined function with G ∈ H1
loc(C). Also,

G(z) = C(∂G)(z), z ∈ C, (2.17)

where

C(h) (z) = − 1
π

∫
C

h(ω)
ω − z

dm(ω)
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is the Cauchy transform.
Furthermore, since ∇G ∈ L2(C)we see that the derivatives ∂G and

∂G are connected through the equation

∂G = S
(
∂G

)
(2.18)

where

Sg(z) = − 1
π

∫
C

g(ω)
(ω − z)2

dm(ω) (2.19)

is the Beurling transform, a singular integral operator. It is well known
and also easy to verify that S is an isometry on L2(C), see [1].

On the other hand, the above reasoning shows that ∂G = χD ∂g in C
while ∂G = ∂g − (P0g)′ for |z| < 1. Thus combining (2.15) and (2.18)
gives

∂G = µ∂g = µS(∂G) + µ(P0g)′.
As ‖µ‖∞ < 1 and S is an L2-isometry, we may rearrange the terms and
obtain

∂G =
(
I − µS

)−1
(
µ(P0g)′

)
.

Inserting this expression to (2.17) shows that

g = P0g + C
[(
I − µS

)−1
(
µ(P0g)′

)]
, on ∂D.

But
Kµh := C

[(
I − µS

)−1
(
µ(P0h)′

)]
is compact as an operator

Kµ : H1/2(∂D) → H1/2(∂D)

since (
I − µS

)−1
(
µ(P0h)′

)
∈ L2(B(0, r))

whenever h ∈ H1/2(∂D), and since r < 1. The lemma is proved. �

Corollary 2.5
Both of the operators

Pµ − P0 ◦ Pµ and Qµ −Q0 ◦ Qµ

are compact on H1/2(∂D).

Proof. The compactness of the first operator is clear since Pµ = P0 ◦
Pµ +Kµ◦Pµ by Lemma 2.4. For the other we use Lemma 2.3 and obtain
for all g ∈ H1/2(∂D)

Qµ(g) = Pµ(g)− L(g) = P0 ◦ Pµ(g) +K1(g)

= Q0

(
Pµ(g)

)
+K2(g) = Q0 ◦ Qµ(g) +K3(g) (2.20)
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where each Kj : H1/2(∂D) → H1/2(∂D), j = 1, 2, 3, is a compact opera-
tor by Lemma 2.4. �

With these auxiliary results we can prove

Theorem 2.6
If supp(µ) ⊂ D, then

Pµ − P0

is a compact operator on H1/2(∂D).

Proof. The previous corollary shows that all g ∈ H1/2(∂D) can be
decomposed as

g = Pµ(g) +Qµ(g) = P0 ◦ Pµ(g) +Q0 ◦ Qµ(g) +K(g),

where K is compact. As P0Q0 = 0 we obtain

P0(g) = P0 ◦ Pµ(g) +K1(g)

where K1 : H1/2(∂D) → H1/2(∂D) is compact. Together with Corol-
lary 2.5 this proves the claim. �

3. Fredholm properties

This subsection is devoted to the proof of Theorem 1.1. Recall first
from [2] that for each compactly supported µ and each k ∈ C there
exists a unique function f = fµ(z) = fµ(z, k) ∈ H1

loc(C) such that

fµ(z, k) = eikz

(
1 +O

(
1
z

))
as |z| → ∞, (3.1)

and that f = fµ satisfies the differential equation ∂f = µ∂f . In fact, fµ

is locally Hölder continuous with gradient in Lp
loc(C) for some p > 2.

The identity (3.1) tells that

P0(e−ikzfµ) = 1

while Lemma 2.2 shows that Pµ(fµ) = fµ. Therefore by adding up we
arrive at

fµ + eikz =
(
Pµ + Pk

0

)
fµ,

proving part b) of Theorem 1.1. The subtraction would have led to
another Fredholm equation, but it is not clear if the solution to this
equation is unique.

Thus for the theorem, we are left to show that the operator I −(
Pk

µ + P0

)
is invertible. We start with
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Theorem 3.1

The operator I − (Pµ + Pk
0 ) is injective on H1/2(∂D).

Proof. Suppose (Pµ + Pk
0 )f = f , where f ∈ H1/2(∂D). Operating by

Pµ on this identity we see that

PµPk
0 (f) = 0.

We hence consider

g(z) = eikz P0(e−ikzf)(z) = (Pk
0 f)(z).

This function extends analytically to D. It also vanishes at origin since
by (2.13)

L(g) = L(Pµg) = 0. (3.2)

This means that
G(z) := g(1/z)

is analytic in the domain C \ D, with G(z) → 0 as z →∞.
On the other hand, with Lemma 2.3 and (3.2) we have on ∂D

Qµ(g) = Pµ(g) = 0,

that is, Pµ(g) = g. Therefore Lemma 2.2 extends G|∂D = g to D as an
H1-function satisfying

∂G = µ∂G. (3.3)

Since G is analytic outside D, it satisfies this equation globally. It follows
that ∇G ∈ Lp

loc(C) for some p > 2, see [1]. Hence G is locally Hölder
continuous, vanishing at ∞. In particular, it is a bounded solution to
(3.3) in the whole plane C, therefore a constant by Liouville’s theorem
[1]. As G vanishes at ∞, G ≡ 0 and hence also Pk

0 (f) = 0 on ∂D.
This last identity implies that f extends as an analytic function to

C \ D with

e−ikzf(z) = O
(

1
z

)
as |z| → ∞. (3.4)

Furthermore, it follows that Pµ(f) = f . Thus the function f extends to
a H1

loc-solution of ∂f = µ∂f in C. However, in [2, Theorem 4.2], we
proved that a solution to (1.5) - (1.6) with development (3.4) must be
identically zero. Thus I − (Pµ + Pk

0 ) is injective. �

To complete the proof of Theorem 1.1 we need to show
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Theorem 3.2

On the space H1/2(∂D) the operator I − (Pµ + Pk
0 ) is a Fredholm

operator with index zero.

Proof. We write the operator in the form

I − (Pµ + Pk
0 ) =

(
I − 2Pk

0

)
+

(
Pk

0 − Pµ

)
.

Therefore it suffices to show that(
I − 2Pk

0

)
is a Fredholm operator with index zero (3.5)

and that (
Pk

0 − Pµ

)
is a compact operator on H1/2(∂D) . (3.6)

Now from (1.9),(
I − 2Pk

0

)
h = −eikz

(
iH0 + L

)
(e−ik ·h).

Since
(
iH0 + L

)2 = I, the claim (3.5) follows.
To prove the remaining claim write

Pk
0 − Pµ =

(
Pk

0 − P0

)
+ (P0 − Pµ) .

Here P0−Pµ is a compact operator by Theorem 2.6. For the compactness
of the second factor

Pk
0 − P0 = eikzP0e

−ikzQ0

note that T (g) = P0

(
e−ikzQ0(g)

)
is a Hankel operator with symbol

e−ikz, and such an operator with a continuous symbol is compact. Hence
we have shown (3.6) and the theorem is proved. �

4. The non-linear Fourier transform

As a last theme we return to the Dirichlet to Neumann operators. It is a
very useful observation that the boundary data corresponding to σ and
1/σ are equivalent.

Proposition 4.1

The Dirichlet to Neumann map Λσ uniquely determines Hµ, H−µ

and Λ1/σ.

Proof. We have shown in (2.8) for real valued u that

∂THµ(u) = Λσ(u) (4.1)
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holds in the weak sense. This is enough since by (2.10) Hµ uniquely
determines H−µ. In fact, we have already used the identity

H−µ − L = −(Hµ + L)−1.

Note also that

Λ1/σ(u) = ∂TH−µ(u) = −∂T (Hµ + L)−1

since −µ = (1− σ−1)/(1 + σ−1). �

In the previous sections we considered the solutions to (1.5) that
have the exponential asymptotics (1.6). However, these give also the
exponential solutions to the original divergence equation (1.1), through
the representation

u(z) = Re fµ(z) + i Im f−µ =
1
2

(
fµ + f−µ + fµ − f−µ

)
.

Hence Proposition 4.1 implies that Theorem 1.1 gives an explicit algo-
rithm also for finding the values of u = uk on ∂D and in the exterior
disk.

Finally τµ(k), the non-linear Fourier transform or the scattering co-
efficient of µ, can be obtained as follows; see [2] for details.The functions
mµ = e−ikzfµ and m−µ = e−ikzf−µ are analytic outside the disk, with
developments

mµ(z) = 1+
a+
1 (k)
z

+
a+
2 (k)
z2

+· · · and m−µ(z) = 1+
a−1 (k)
z

+
a−2 (k)
z2

+· · ·

In [2, Section 5], it is shown that τµ(k) satisfies the identity

τµ(k) =
1
2

(
a+
1 (k)− a−1 (k)

)
, k ∈ C.

Thus the above gives a constructive algorithm for finding this quantity.
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