Animal Biodiversity and Conservation 27.1 (2004) 515

A Bayesian approach to combining
animal abundance and demographic
data

S. P. Brooks, R. King & B. J. T. Morgan

Brooks, S. P., King, R. & Morgan, B. J. T., 2004. A Bayesian approach to combining animal abundance and
demographic data. Animal Biodiversity and Conservation, 27.1: 515-529.

Abstract

A Bayesian approach to combining animal abundance and demographic data.— In studies of wild animals,
one frequently encounters both count and mark—recapture—recovery data. Here, we consider an integrated
Bayesian analysis of ring—recovery and count data using a state—space model. We then impose a Leslie—
matrix-based model on the true population counts describing the natural birth—death and age transition
processes. We focus upon the analysis of both count and recovery data collected on British lapwings
(Vanellus vanellus) combined with records of the number of frost days each winter. We demonstrate how the
combined analysis of these data provides a more robust inferential framework and discuss how the
Bayesian approach using MCMC allows us to remove the potentially restrictive normality assumptions
commonly assumed for analyses of this sort. It is shown how WinBUGS may be used to perform the
Bayesian analysis. WinBUGS code is provided and its performance is critically discussed.

Key words: Census data, Integrated analysis, Kalman filter, Logistic regression, Ring—recovery data, State—
space model, WinBUGS.

Resumen

Aproximacion bayesiana para combinar abundancia y datos demograficos.— En estudios de animales
salvajes, es frecuente encontrarse tanto con datos de recuento como datos de marcaje—recaptura—
recuperacion. En el presente estudio consideramos un andlisis integrado bayesiano de recuperacion de
anillas y datos de recuento utilizando un modelo de estado—espacio. Seguidamente aplicamos un modelo
basado en las matrices de Leslie en los recuentos de poblacion verdadera para describir los procesos
naturales de nacimiento—muerte y de transicion de edades. Nos centramos en el analisis de los datos de
recuento y de recuperacion recopilados en avefrias europeas (Vanellus vanellus) en combinacién con los
registros del nimero de dias de helada de cada invierno. Demostramos como el andlisis combinado de
estos datos proporciona un marco inferencial mas soélido, y discutimos como el enfoque bayesiano usando
MCMC nos permite eliminar los supuestos de normalidad potencialmente restrictivos que suelen adoptarse
en andlisis de este tipo. Se demuestra como puede utilizarse WinBUGS para realizar el andlisis bayesiano.
Se facilita el cédigo WinBUGS, y se discute su funcionamiento.
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Introduction

Studies of wildlife populations often result in different
forms of data being collected from different sources.
Useful data comprise capture—recapture data (of live
animals), ring-recovery data (of dead animals), ra-
dio—tagging (where the state of each animal is known
at all times), data on productivity (as in nest-record
data, for example), location data and/or count data
(estimates of total population size). By combining
data from different sources, we obtain more robust
(and self-consistent) parameter estimates that fully
reflect the information available. Previous studies of
combined data of this sort include the analysis of
joint capture-recapture and ring-recovery data
(Catchpole et al., 1998; King & Brooks, 2002b),
multi—site data (King & Brooks, 2002a; King & Brooks,
2003) and joint ring—recovery and either census data
or population indices (Besbeas et al., 2002).

In this paper, we shall consider a Bayesian analy-
sis of joint ring—recovery and population index data,
revisiting the analysis of Besbeas et al., 2002. We
demonstrate how the state space model used to
describe the index data can be easily fitted using
Markov chain Monte Carlo (MCMC; Gamerman, 1995;
Gilks et al., 1996; Brooks, 1998) and implemented via
WInBUGS (Spiegelhalter et al., 2002b; Gentleman,
1997; Link et al., 2002). An appendix provides code to
analyse the dataset described here. MCMC methods
provide an alternative to the Kalman filter based
approaches typically applied to problems of this sort.
They also permit more general modelling frameworks
for cases where the usual normality and linearity
assumptions are not appropriate.

We begin in "Data and modelling" section with
an introduction to the data and of the models we
will use here. In "Analysis and results" section we
describe the Bayesian analysis of these data using
WIinBUGS and provide estimates for key param-
eters of interest. In "Non-mortality" section we
provide an example where the Bayesian analysis is
more appropriate due to the small count values.
Finally, in "Discussion" section we discuss the use
of WinBUGS, both for the application of this paper,
and more generally.

Data and modelling

The British lapwing (Vanellus vanellus) population
has been declining over recent years and has been
placed on the "amber" list of species of conserva-
tion concern in Britain. As such, it has received a
great deal of attention over recent years (Tucker et
al., 1994) not least because it can be regarded as
an "indicator" species in that by understanding the
reasons for its decline, we might gain insight into
the dynamics of similar farmland birds. We have
two distinct sources of data, both of which are
provided by the British Trust for Ornithology (BTO):
index data providing annual population size esti-
mates and recovery data from birds ringed as
chicks and subsequently reported dead. Note that

in the case of lapwings, the index data do not
provide a formal census of a national population,
but may be regarded as estimating the population
size for the set of sites at which observations take
place. We also introduce the number of days each
year that a Central England temperature fell below
zero, as a covariate to help describe the variation in
survival over time. We begin with a description of
the population index data and associated model.

Population index data

The population index data are derived from the
Common Birds Census (CBC) which has been
the main source of information on population
levels for common British birds since it was es-
tablished in 1962. More recently it has been
replaced by the Breeding Bird Survey. Annual
counts are made at a number of sites around the
UK and from these an index value is calculated
based upon a statistical analysis of the data
collected (Ter Braak et al.,, 1994). The raw data
are not used, but the index provides a measure of
the population level, taking account of the fact
that each year only a small proportion of sites are
actually surveyed. We shall consider the analysis
of single—site data in Section 4. Here, we analyse
the index values collected for adult females from
1965 to 1998 inclusive and we omit data from
earlier years of the study during which the index
protocol was being standardised. The data are
plotted in (Besbeas et al., 2002). We denote the
index value for year t by y, and, for consistency
with the ring—recovery data described later, we
associate the year 1963 with the value t=1, so
that we actually observe the values y,,...,y.

Since these y, are only estimates, we first try to
estimate the true underlying population levels that
we will subsequently use as input into our system
model. Here we shall assume that

Y, ~ N(N,, 02 &)

where N_ represents the true underlying numbers
of adult females aged > 2 years at time t. Here ay2
is taken as a constant variance, although other
assumptions could also be made. For an index, a
constant variance seems reasonable; we do not
have access to the estimated standard errors re-
sulting from the separate statistical analysis that
has resulted in the population index. Note that we
estimate ay2 from the index data, and not from the
raw survey data. This then describes the observa-
tion process by which the estimates y, are derived
from the true underlying process N, .

We next need to describe the underlying system
process which provides a model for the evolution of
the true underlying population size over time. We
follow the notation of Besbeas et al. (2002), rather
than Durbin & Koopman (1997). A natural model
would be to assume that

Na,t ~ Bin (Nl, e T Na,t—l’ ¢a,t—1)
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where N, , denotes the number of females of age 1
in year t and ¢a denotes the adult survival rate in
year t. We note here that lapwings are considered
adult after year 1 of life. Thus, the number of adults
aged > 2 years in year t is derived directly from the
number of adults and birds in their first year of life
in the previous year which survive fromt—-1tot. In
a similar manner, we might model the number of 1—
year old females in year t by

Nl,t ~ Po (Na,t—l Pra ¢1,t—1)

where ¢1 . denotes the first-year survival rate in year
tand p, denotes the productivity rate in year ti.e., the
average number of female offspring per adult fe-
male. We therefore assume that breeding begins at
age 2. Thus, the number of birds aged 1 in year t
stems directly from the number of chicks produced
the year before which then survive from t — 1 to t.
Traditionally, this model is difficult to fit classi-
cally as it falls beyond the standard normal frame-
work (Durbin & Koopman, 1997). Thus, we adopt
instead the common normal approximation in which

we take
Na t ¢a ¢a t—1 Na t—1 88 t (2)
where the ¢,, and &, , are assumed to be independ-

ent and NormaIIy dlstrlbuted each with mean zero
and variance 2, , and Uzat, respectively. To approxi-
mate the P0|sson/B|nom|aI model above, we take

0% = Nas Py ¢l,t—1
at = (Nl,t—l + Na,t—l) ¢a,t—1(l - ¢a,t—1)

See Sullivan (1992), Newman (1998) and
Besbeas et al. (2002) for example.

It is worth noting here that though the model
depends upon the survival rates, there is typically
very little information in the data with which to
estimate them. In order to provide additional infor-
mation, we can combine these data with those from
a recovery study which provides far greater infor-
mation on the survival rates.

g2

Recovery data

To augment the index data, we also have recovery
data from lapwings ringed as chicks between 1963
and 1997 and later found dead and reported be-
tween 1964 and 1998. Adult birds were also ringed
as part of the study, but they make up a very small
proportion of the total dataset and are ignored. The
data are reproduced in Besbeas et al. (2001).
Here, we denote the observed recovery data by
M, 1, = 1,...,35, L=t + 1,...,37, where my,
denotes the number of animals released at the
beginning of year t; and subsequently recovered
(dead) in the year up to the end of year t, for t,< 36
and m, s;; denotes the number of animals ringed in
year t, and never subsequently returned. We then

assume that for each t;, the values my,,
t,=t,+1,..,37 follow a multinomial distribution
with proportions p,, which denote the probability
that a chick ringed in year t, is subsequently
returned in year t,.

Here we shall assume, as for the index data,
that adults and first years have different time—
varying survival rates, but common time—varying
recovery rate 4, denoting the probability that a
bird which dies in year t is recovered. See Besbeas
et al. (2002) for further details and assumptions
underpinning this model. Under this model, we
have that:

¢,
P, -2
’ ’2 Vtz ¢1t‘ ¢a -1 HkE:t'M ¢a,k t2

and p,“37=1—2‘3:p[1,{. Throughout this paper, we
follow the convention that a null sequence has sum
0 and product 1. Thus, in the formula (3) for

P, the product term is 1 when t, =t + 2.

=t +2..36 (3)

Incorporating covariates

As well as the index and recovery data, we also
have a variety of weather covariates that we can
use to try to explain the variation of our model
parameters over time. Of particular relevance are
the number of frost days (i.e., the number of days
during which a Central England temperature went
below freezing) each year. For year t, f, denotes the
number of days below freezing between April of
year t and March of year (t+ 1), inclusive. This
covariate was used by Besbeas et al., 2002. The
survival probability of wild birds is likely to be more
affected by lengthy cold periods rather than by low
average temperatures, which might result from rela-
tively short cold spells. Thus, we take

logit ¢, = a;tfif (4)
and logit ¢, = d.t Sof; (5)

We expect to encounter a decline over time of
the reporting probability of dead animals (see e.g.,
Baillie & Green, 1987) and in addition we are
interested in seeing whether productivity might
change over time. It should be noted that we base
our models on the model selected by Besbeas et
al. (2002), and do not carry out a model compari-
son. That will be the subject of further work (King
et al., 2004). Thus, here, we set

logit 4, = a, + f3, t (6)

and, since productivity is constrained only to be
positive and not simply to values in [0,1], we have

log p, = a,+f,t @)
Thus the model components (index, recovery

and covariates) can then be combined to provide a
single comprehensive analysis.
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The integrated model

The model for the population indices described in
"Population index data" section depends upon
parameters p, ¢,,, ¢, azy and the underlying
population levels N, and N,, which we treat as
missing values to be estimated. This model is
described as a joint probability density for the
observed data y = (Y,,....Y5) in terms of these
parameters as follows.

FOINy Ny oy e )
= fYIN, 02) F(Ny Ny . i, )

where f(y[N,, 0.2y) is the density corresponding to
Equation (1) and f(N,, N,|p. ¢,, ¢,) is derived from
Equation (2).

The recovery model described in "Recovery data”
section depends upon parameters 4, ¢, and ¢_,
and has corresponding joint density f(m|4, ¢,, ¢,)
under the multinomial model with probabilities given
in Equation (3).

It is clear that both of these models have param-
eters in common (¢, and ¢,). Thus, combining the
two datasets and analysing them together pools the
information regarding these parameters and this
filters into the estimation of the remaining param-
eters. The combination of these two models is most
clearly demonstrated in the Directed Acyclic Graph
(DAG) given in figure 1.

In the DAG, known quantities (i.e., data) are
represented by squares and unknown quantities
(parameters to be estimated) by circles. Arrows
between nodes in the graph represent dependen-
cies within the model between the corresponding
nodes. Continuous arrows denote stochastic depend-
encies such as those given in Equations (1)—(3), whilst
dashed arrows denote deterministic dependencies
such as those described in Equations (4)—(7). Ana-
lysing the combined data simply involves merging
the two individual DAG's.

Similarly, and under the assumption of inde-
pendence between the two data sources, we now
obtain a corresponding joint probability distribution
for the combined data as follows

f (y’ m M’ P ¢1’ ¢a’ Na’ Nl)

= [l b1 ¢ Now NY) f(M4, &, 61)

This is our basis for inference. From the classi-
cal perspective, we treat this as a likelihood func-
tion for the model parameters given the data and
seek to maximise it with respect to those param-
eters. The underlying population levels N, and N,
are essentially nuisance parameters which, ideally,
we would like to integrate out of the likelihood.
Unfortunately, this is impossible to do analytically
and we need to adopt numerical techniques such
as the Kalman filter in order to obtain classical
estimates. Besbeas et al. (2002) provide a detailed
description of the classical analysis.

From the Bayesian perspective, we elicit priors
for the model parameters and combine these with
the joint probability density above to obtain a pos-
terior density via Bayes’ theorem. The nuisance
parameters are then integrated out using MCMC.
Several recent papers (Brooks et al., 2002; Dupuis
et al., 2002; He et al., 2001; McAllister et al., 1994)
discuss the application of Bayesian statistical meth-
ods to parameter estimation for ecological models
and many use the WinBUGS package (see e.g.,
Link et al., 2002; Meyer & Millar, 1999) to carry out
their analyses. We provide the corresponding
WinBUGS code for our analyses in the appendix.

Analysis and results

We begin by specifying priors for our model param-
eters. In some cases we might have prior informa-
tion that we want to include e.g., relating to produc-
tivity. Others who have analysed census or popula-
tion index data alone from a Bayesian perspective
have used informed priors (see e.g., Millar & Meyer,
2000; Thomas et al., 2004). In other cases, for
instance with regard to regression coefficients, we
may know very little about what to expect. In this
paper we choose relatively vague priors to reflect
this uncertainty. Hence we take N(0,100) priors for
the regression parameters and an inverse gamma
prior with parameters 0.001 for ¢2,. We also need to
place priors on the initial population levels N, , and
N, (recall that our population index data begins in
year 3, within our parameterisation). Again, we take
vague Normal priors with mean 200 and 1,000
respectively and variances of 10° in order to avoid
influencing the posterior with overly restrictive priors.
An extensive sensitivity study in which each of these
prior parameter values were increased by several
orders of magnitude, gave essentially identical re-
sults, suggesting that the exact choice of prior had
little influence on the results obtained.

We ran our MCMC algorithm for one million
iterations, discarding the first 100,000 as burn—in
and thinning the remainder to one in every tenth
observation to save storage space. In general, the
selection of starting points should have no affect on
the performance of the simulation nor on the final
results. However, WinBUGS can occasionally get
stuck or crash when certain starting point values are
used. Posterior means often provide sensible start-
ing values, though these would not generally be
available in practice. MLE's also provide suitable
starting points for analyses in WinBUGS. The analy-
sis of the combined data set took approximately 18
hours on a 850 MHz personal computer in WinBUGS,
and we return to discuss the topic of computational
overheads in "Discussion” section of the paper.

Table 1 provides the posterior means and corre-
sponding standard deviations for the model param-
eters from the analysis of the combined data, to-
gether with the same estimates under the analyses
of the two data sets individually. The comparatively
large posterior standard deviations for the majority
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Fig. 1. Directed Acyclic Graph (DAG) corresponding to the combined model for the index and recovery data.

Fig. 1. Grafico Aciclico Dirigido (DAG) correspondiente al modelo combinado para los datos del indice

y de recuperacion.

of parameters under the population index data alone
confirms our earlier assertion about the lack of
information in the index data concerning survival.
In particular, we can see that the posterior mean for

the slope parameter for the adult survival rate f,, is
barely negative, implying that the adult survival rate
decreases only slightly with harsher winters, in
terms of the number of frost days, but estimated

Table 1. Posterior means and standard deviations for the analyses of the population index data, the
recovery data and the two combined.

Tabla 1. Medias posteriores y desviaciones estandar para los analisis de los datos del indice

poblacional, los datos de recuperacion y ambos combinados.

Data

Index only Recovery only Combined

Parameter Mean SD Mean SD Mean SD
a, 7.167 7.014 0.536 0.069 0.543 0.069
‘A —0.249 3.844 —-0.208 0.062 -0.197 0.060
a 2.512 0.402 1.532 0.070 1.550 0.071
b, —0.004 0.219 —-0.311 0.044 —-0.243 0.039
a, -1.235 0.460 - — —0.668 0.095
B, -0.079 0.030 - — -0.027 0.005
a, - — -3.925 0.087 -3.910 0.087
B, - — —0.034 0.004 —0.034 0.004
a? 24,170 7,427 - - 28,599 8,615
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with low precision. The posterior distribution for
the first year survival rate also has a large vari-
ance, although the posterior mean for f; is nega-
tive. We note also the similarity in the parameter
estimates under the ring—recovery model and the
combined analysis as in this application, it is the
ring—recovery data that provide most of the infor-
mation about survival. Finally, we note that by
combining the two data sources, the posterior
standard deviations for the productivity param-
eters decrease dramatically, because of the addi-
tional information about survival provided by the
recovery data (table 2).

Figure 2 provides plots of the corresponding
posterior means and 95% highest posterior density
intervals (HPDI's) for the survival, recovery and
productivity rates over time based upon the com-
bined analysis. Clearly, the logistic and log regres-
sions for A and p respectively on time provide very
smooth estimates of recovery and productivity both
of which decrease over time. We also note that the
adult survival rate is always greater than the first
year survival rate, for all times, as we would expect.
The annual fluctuations in the survival rates relate
to the number of frost days in the given year, with
the noticeable drops in survival rates for both first
years and adults corresponding to harsh winters.

Figure 3 provides a plot demonstrating how sur-
vival decreases with the number of frost days for
both first years and adults. This plot clearly illus-
trates the decline in survival associated with an
increase in frost days corresponding to a generally
harsher winter.

Figure 4 provides plots of the posterior means
and HPDI’s for the true underlying population levels
for the birds aged 1, adults and entire population.
Note the precision of the estimates of the underly-
ing population levels for birds aged 1, despite the
lack of any direct observations on the population
size for these animals. Note also the wider credible
intervals for the population levels in 1966. This is
due to the reduced smoothing effect for this esti-
mate which essentially has only one neighbour. In
particular, we note the clear decline in the adult
population from 1978 which is also apparent in the
year 1 population levels but masked somewhat by
the y—axis scale here.

An attractive by—product of the Kalman filter
approach, which essentially samples the underlying
population levels and then averages over them, is
that it can produce smoothed estimates of the
numbers of animals in the different age—classes
and also r,= (N,,/ N, where N, is the total popula-
tion size at time t. This is a quantity of particular
interest to ecologists. However, within the classical
paradigm, it is difficult to obtain error bands for this
quantity, plotted against time, though a time—con-
suming bootstrap approach could be used. Replac-
ing the Kalman filter by a Bayesian approach, it is
relatively straightforward to obtain the desired er-
ror—bands. Once again, the WinBUGS code can be
extended to draw samples from the posterior mar-
ginal distribution of the r_from which posterior

Table 2. Posterior means and associated
standard deviations for the analyses of the
census data from site 51, together with the
recovery data: Po/Bin. Poisson/Binomial; P.
Parameter.

Tabla 2. Medias posteriores y desviaciones
estandar asociadas para los analisis de los
datos censales del emplazamiento 51, junto
con los datos de recuperaciéon: Po/Bin.
Poisson/Binomial; P. Parametro.

Po/Bin Normal

P Mean SD Mean SD

a, 0.521 0.068 0.526 0.068
A —-0.220 0.062 —-0.214 0.062
a, 1.477 0.067 1.496 0.068
iR —-0.314 0.043 —-0.316 0.043
a, 0.049 0.732 1.025 1.013
B, -0.025 0.032 —0.084 0.053
a -3.945 0.086 —3.939 0.086
B, —-0.033 0.004 —0.033 0.004
a? 6.320 3.531 6.140 3.037

means and variances can be derived. Figure 5
provides the corresponding estimates for the r, from
our combined analysis together with error bounds
corresponding to the 95% HPDI for the full data set.
As we might expect from fig. 5, the values slowly
decrease over time, but the width of the posterior
HPDI'’s is considerably smaller than the variation of
the different values themselves over time, suggest-
ing that a reasonably strong signal is coming through
from the data.

Non-normality

State—space models have been used by many au-
thors to describe ecological processes (Millar &
Meyer, 2000; Newman, 1998; Sullivan, 1992;
Jamieson & Brooks, 2004). Traditionally, (multi-
variate) normal approximations are made so that
the Kalman filter can be used to form the likelihood.
The need for a more flexible approach was appre-
ciated by Carlin et al. (1992), who consider both
non-linearity and non—normality, in the latter case
by using mixtures of normals. Note also Durbin &
Koopman (1997). However, the Bayesian approach
provides an even more flexible framework in which
assumptions of normality (Millar & Meyer, 2000)
and linearity (Jamieson & Brooks, 2004; Millar &
Meyer, 2000) can be relaxed.
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Fig. 2. Posterior means and corresponding HPDI’s for the population parameters over time under the
analysis of the combined data. Note the reduced y—scale for the A plot for clarity.

Fig 2. Medias posteriores y consiguientes HPDI para los parametros poblacionales a lo largo del
tiempo, segun el andlisis de los datos combinados. La representacion grafica de A y se reproduce a

escala reducida para el eje y a efectos de claridad.

As an illustration of the ease with which the
normal model described in this paper can be ex-
tended to the underlying Poisson/Binomial model,
the WinBUGS code in the appendix describes the
few lines which need to change in order to imple-
ment the Poisson/Binomial model. Running the
WInBUGS code for the Poisson/Binomial model pro-
vided very similar parameter estimates to those
obtained under the normal model, since the popula-
tion levels are sufficiently large for the normality
approximations to perform well. However, with smaller
populations the approximation will begin to break
down and the ability to fit the Poisson/Binomial
model will be crucial. This is likely to be particularly
important when we move from data at the national
level to the local level. See Besbeas et al. (in press).

As an example, let us consider the raw census
data from a single site. Single site data are con-
sidered by Besheas et al. (in press); we shall
focus on just one of the sites that they consider,
site number 51, which accounts for approximately
1% of the total population. Table 2 provides the
posterior means for the regression parameters
under both the Poisson/Binomial and the Normal
model. As with the full analysis, the recovery data
dominate the estimation of the survival and recov-
ery parameters, but the productivity rate is esti-
mated essentially from the site census data and
here we see a more dramatic difference between
the Poisson/Binomial and Normal models.

Figure 6 provides the corresponding plots for the
productivity rate estimated under both models and
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Fig. 3. Plot of how survival changes with frost
days for adults (top) and first years (bottom).

Fig. 3. Representacion grafica de la variacion de
coémo la supervivencia varia con los dias de
helada en adultos (superior) y a los de primer
afio (abajo).

the total population size. The Normal model
suggests a far sharper decrease in the produc-
tivity rate over time, with the curve finishing
below the corresponding estimate under the
Poisson/Binomial model at the end of the study.
In terms of the underlying total population esti-
mates, the two models provide very similar esti-
mates except for the final few years, where the
Normal model suggests a continued shallow
decline, whilst the Poisson/Binomial model sug-
gests a fairly rapid increase. This is a conse-
quence of the Poisson/Binomial model estimate
of productivity being flatter than that of the
Normal model, as we see from Figure 6. This
discrepancy clearly indicates an important diver-
gence between the two approaches. Note that
the bounds of the HPDI's from one model barely
cover the corresponding means under the other.
Though the Normal model is supposed to pro-
vide an approximation to the Poisson/Binomial
model, it is clearly beginning to break down for
these data from a single site. For site 51 there
were 26 consecutive annual observations, and
counts covered the range, 1-16, with only 6
counts being > 10. It is therefore not surprising
that for these data the Bayesian analysis might
differ from the analysis based on normal ap-
proximations. From the work of this section we
have seen that the analysis based on the normal
approximations is surprisingly robust.

Fig. 4. Posterior means and corresponding
HPDI's for N, (bottom), N, (middle) and total
population size (top) over time under the
combined data analysis.

Fig. 4. Medias posteriores y consiguientes
HPDI para N, (abajo), N, (centro) y tamafio
poblacional total (arriba) a lo largo del tiempo,
segun el andlisis de datos combinados.
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Fig. 5. Posterior means and HPDI’s for the r,
values over time, under the combined data
analysis.

Fig. 5. Medias posteriores y consiguientes HPDI
para los valores de r,a lo largo del tiempo,
segun el andlisis de datos combinados.
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Fig. 6. Plots of the posterior means and HPDI'’s for the p, and total population size over time, based
upon both the Normal (continuous) and Poisson/Binomial (dashed) models using the census data

from site 51.

Fig. 6. Representaciones gréaficas de las medias posteriores y los HPDI para p, y el tamafio poblacional
total a lo largo del tiempo, basadas en los modelos Normal (lineas continuas) y Poisson/Binomial
(lineas discontinuas), utilizando los datos censales del emplazamiento 51.

In this paper we do not provide a detailed discus-
sion of goodness—of-fit, but we note here that it is
very simple to construct Bayesian p—values (Gelman
et al.,, 1996) for the models of this paper; for
example, for the Poisson/Binomial model applied to
the national data, then using the likelihood as the
discrepancy function we get a Bayesian p—value of
0.513, whereas using the Freeman—Tukey statistic
we obtain a Bayesian p—value of 0.531. These
values indicate very good agreement between the
model and the data.

Discussion

We end with a brief discussion on the benefits and
drawbacks of the WinBUGS package for ecological
analyses. It is certainly our experience that for
many simple and standard models, WinBUGS pro-
vides an invaluable tool for analysing small data
sets (Brooks et al., 2003) and for initial exploratory
analysis. WinBUGS is primarily designed for the
Bayesian analysis of hierarchical models common
within the medical literature, but many standard
ecological models can be analysed with WinBUGS.
Code is generally easy to write, especially when
adapting existing code such as adding random
effects for example. For moderately sized datasets,
the computation times are generally fairly small
and there are a variety of tools available within the

package for obtaining posterior summaries and for
checking sampler performance. However, as mod-
els increase in complexity and data sets increase in
size the advantages of having bespoke code in a
lower—level language (the authors use Fortran) be-
come very apparent.

The data described here are a case in point. For
example, the WinBUGS default choice of updating
schemes appears to be rather inefficient for these
data so that long run lengths are required. This not
only means long run times, but can often cause
memory problems on many desktop PC’s. In order
to select and tune our own MCMC proposals, it
was necessary for us to write our own code. For
comparison, the MCMC run discussed in "Analysis
and results" section that took 18 hours in WinBUGS
took less than 1 hour in Fortran on machines of
comparable power.

Another big advantage of writing bespoke code
to implement the MCMC algorithms is the ability
to extend the code to incorporate reversible jump
MCMC updates to allow for Bayesian model dis-
crimination. See King & Brooks (2002a, 2002b,
2003), for example. Whilst it is possible to use the
method of Carlin & Chib (1995) to calculate posterior
model probabilities in WinBUGS and to use the DIC
criterion developed by Spiegelhalter et al. (2002a)
and implemented in WinBUGS version 1.4, these
cannot be used to efficiently explore model spaces of
even moderate dimensions.
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With any MCMC simulation, it is important to
check convergence of the sampled values to their
stationary distribution. WinBUGS incorporates the
so—called Brooks—-Gelman—Rubin Diagnostic
(Gelman & Rubin, 1992; Brooks & Gelman, 1998)
and also allows for sampler output to be written to
a file for analysis outside of the WinBUGS pack-
age. The authors’ preferred method is to use stand-
ard diagnostic techniques (Brooks & Roberts, 1998)
to determine the burn—in length and then discard
ten times as many iterations as indicated. Several
replications are run and compared and, if all agree,
then convergence is assumed. However, the run—
times within the WinBUGS package, coupled with
the inability to improve mixing by controlling pro-
posal schemes can mean that this over—cautious
approach cannot easily be followed in WinBUGS.
Indeed the built—in diagnostics in WinBUGS ap-
peared to diagnose convergence after just 100,000
iterations, for the population index data alone though
the answers obtained from the longer run—lengths
adopted in this paper differ considerably from those
obtained with such a short run (e.g., f;=-5.41; cf
table 1). This problem is, of course, somewhat
analogous to the problems encountered in classical
optimisation routines used to find maximum likeli-
hood estimates where it is difficult to check that the
true maximum has indeed been found. Overall,
more experienced MCMC users are likely to benefit
from developing their own suite of lower—level codes
to implement their own MCMC algorithms. How-
ever, as a tool for getting started, for performing
exploratory analyses on moderately—sized datasets
and for teaching, the WinBUGS package is invalu-
able (see the annex).
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Annex. WinBUGS code, data and starting values which can be used to reproduce the results
provided in this paper. The code was written and tested in WinBUGS version 1.4 and may not work
on earlier versions.

Anexo. Codigo WinBUGS, los datos y valores iniciales necesarios para reproducir los resultados dados
en este trabajo. El codigo fue escrito y probado con la version 1.4 de WinBUGS y puede no funcionar
con versiones anteriores.

The code

{

# Define the priors for the logistic regression parameters
alphal ~ dnorm(0,0.01)
alphaa ~ dnorm(0,0.01)
alphar ~ dnorm(0,0.01)
alphal ~ dnorm(0,0.01)
betal ~ dnorm(0,0.01)
betaa ~ dnorm(0,0.01)
betar ~ dnorm(0,0.01)
betal ~ dnorm(0,0.01)

# Define the observation error prior
sigy <— l/tauy
tauy ~ dgamma(0.001,0.001)

# Define the logistic regression equations
for(t in 1:(T-1)){
logit(phia[t]) <— alphaa + betaa*f[t]
log(rho[t]) <— alphar + betar*t # We assume here that t=1
logit(phil[t]) <— alphal + betal*f[t] # corresponds to the year 1963
logit(lambdalt]) <— alphal + betal*(t+1)
}

# Define r[t]
for (t in 3:(T-1))1{
r[t—=2] <— (Na[t+1]+N21[t+1])/(Na[t]+N21[t])
}

# Define the initial population priors
for(t in 1:2){
N1[tf] ~ dnorm(200,0.000001)
Na[t] ~ dnorm(1000,0.000001)

}

# Define the system process for the census/index data using the Normal approximation
for(t in 3:T){
meanl[t] <— rho[t—1]*phil[t—1]*Na[t—1]
meana[t] <— phia[t-1]*(N1[t-1]+Na[t-1])

taullt] <— 1/(Na[t—-1]*rho[t—1]*phil[t—1])
tauat] <— 1/((N1[t-1]+Na[t=1])*phia[t-1]*(1—phia[t—1]))

N1[t] ~ dnorm(meanl[t],taul[t])
Na[t] ~ dnorm(meanal[t],taua]t])

}

# Define the system process for the census/index data using the Poisson/Binomial model
#
# NB. Need to change initial population priors as well to ensure N1 and

Na take integer values
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for(t in 3:T){
binl[t] <— N1[t-1]+Na[t-1]
bin2[t] <— phia[t-1]

N1[t] ~ dpois(polt])
Na[t] ~ dbin(bin2[t],binl[t])
}

# Define the observation process for the census/index data
for(t in 3:T){
y[t] ~ dnorm(Na]t],tauy)

#
#
#
#
# po[t] <— Na[t—1]*rho[t—1]*phil[t-1]
#
#
#
#

# Define the recovery likelihood
for(tin 1 : T1){
mft, 1 : (T2 + 1)] ~ dmulti(p[t, ], rel[t])

# Calculate the no. of birds released each year
for(tin 1 : T1){
rel[t] <= sum(mlt, ])
}

# Calculate the cell probabilities for the recovery table for(tl in 1 : (T1-1)){

# Calculate the diagonal
p[tl, t1] <— lambda[tl] * (1-phil[t1])

# Calculate value one above the diagonal
p[tl, t1+1] <— lambda[t1+1] * phil[t1]*(1—phia[t1+1])

# Calculate remaining terms above diagonal
for(t2 in (t1+2) : T2 ¥
for(t in (t1+1):(t2—-1)¥{
Iphi[tl, t2, t] <— log(phia[t])

# Probabilities in table
p[tl,t2] <— lambda[t2]*phil[tl] * (1—phia[t2])*
exp(sum(Iphi[t1,t2,(t1+1):(t2-1)]))

for(t2 in 1 : (t1 — 1)){

# Zero probabilities in lower triangle of table
p[t1, t2] <- 0
}

# Probability of an animal never being seen again
ptl, T2 + 1] <= 1 — sum(p[tl, 1 : T2])
}

# Final row
p[T1,T1] <- lambda[T1]*(1—phil[T1])
for(t in 1:(T1-1)){
p[T1,t] <- 0

}
p[T1,T1+1] <— 1 — p[T1,T1]
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Data

The data here correspond to index records from 1965 to 1998, (normalised) frost days from 1963 to
1997 and recovery data from 1963 to 1997. Zeroes are added to make all data run from 1963 until
1998.

list (T = 36,

y = ¢ (0,0, 1092.23,1 100.01, 1234.32, 1460.85, 1570.38, 1819.79,1391.27,1507.60,
1541.44,1631.21,1628.60,1609.33,1801.68,1809.08,1754.74,1779.48,1699.13,
1681.39,1610.46,1918.45,1717.07,1415.69,1229.02,1082.02,1096.61,1045.84,
1137.03,981.1,647.67,992.65,968.62,926.83,952.96,865.64),

f = ¢(0.1922,0.3082,0.3082,-0.9676,0.5401,0.3082,1.1995,0.1921,-0.8526,
-1.0835,-0.6196,-1.1995,-0.5037,-0.1557,0.0762,2.628,-0.3877,-0.968,
1.9318,-0.6196,-0.3877,1.700, 2.2797,0.6561,-0.8516,-1.0835,-1.0835,
0.1922,0.1922,-0.1557,-0.5037,-0.8516,0.8880,-0.0398,-1.1995,0),

T1 = 35, T2 = 35, m = structure(. Data = c(

3., 4.,,1.,2.,1.,0.,60.,12.,,0.,0.,60.,212.,0.,0.,0., 0., 0., 0.,
0., o0.,0.,690.,06¢0.,0%0.,¢0.,60.,60.,60.,0.,60.,0.,0.,0.,0.,0., 1124.,
0., 16., 4., 3., 0., 1., 1., 0., 0., 0., 0., 0., 2., 0., 0.,0., O., O.,
0., 0., o0.,60.,60.,6¢0.,60.,60.,60.,60.,0.,60.,60.,0.,0., 0., 0., 1259.,
0.,0.,11.,1.,1.,11.,0.,,2.,121.,1.,1.,1.,2.,0.,0.,1., 0., 0.,
1., 0.,60.,60,60.,60.,0.,0.,0,C0,060.,0,0.,0.,60.,0.,0., 1082.,
0., 0., 0., 10., 4., 2., 1., 1., 1.,0., 0., 0., 0., 0., 0., O., 1., 0.,
0., 0., 0., 0., 0., 0., 0., 0.,0., 0., 0., 0., 0., 0., 0., 0., 0., 1595.,
0., 0., 0., 0., 12., 1., 5., 0., 0.,0., 2., 1., 1., 1., 1., 0., 0., 0.,
0., 0., 0., 0., 0.,,.0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1596.,

.
o
.
o
I
°
N
.
-
-
N
o
-
o
o

. ., 0., 0., , .
0., , 0., 0., 0., 0., , , 0., 0., 0., , 11., 4., 0., 2., 1.,1.,
2.,2.,6¢0.,8.,60.,0.,60.,60.,60.,60.,0.,640.,60.,¢0.,60., 0.0., 2538.,
0., , 0., 0.,60.,60.,80.,60.,60.,60.,60.,60.,¢0.,11.,3.,5., 1., 3.,
3., 2.,3.,0.,1.,,0.,1., 1., 0., 0.,0.,0.,0.,0.,,0.,0.,0., 3270.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,0., O., 0., 12., 5., 0., 5.,
4., 2.,1.,2.,3.,60.,¢0.,0.,1.,0.,0.,,0.,0.,0.,,0.,0., 0., 3443.,
0., 0., 0., 0., 0.,60.,60.,0.,0.,60.,60.,60.,¢0.,%0., 0., 15,5, 2.,

0., 0 . . . . .
8.,1., 2., 4.,5.,,8.,,0.,1., 2.,,0.,0.,1.,,0., 0., 0., 0., 0., 3447.,
0., 0., 0., 0.,, 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., O., 0.,
23.,2.,2.,3.,38.,8.,1.,0.,,0.,0.,0.,0.,0.,0., 0., 0.,0., 3902.,
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6., 0., 0., 0., 0., 0., 0., 0.,0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,

6., 0., 0., 22.,3., 2., 0.,0., 0., 0., 2., 0., 1., 0., 0., 0., 0., 4017.,

6., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., O.,

0., 0., 0., 0., 256., 2., 5., 2.,0.,2.,,2.,2.,0.,0.,0., 0., 0., 4827,

6., 0.,0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,

0., 0.,0.,0.,0., 14.,,4.,3.,4.,4.,,2.,2.,1.,0.,2.,0., 1., 4732.,

6., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,0.,

0., 0., 0., 0., 0., 0., 24.,, 2.,1., 2., 2., 3., 0., 0., 3., 0.,0., 5000.,

6., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,0., 0., 0., 0.,

6., 0., 0., 0., 0., 0., 0., 18., 4., 4., 3., 0., 2.,1., 0., 2., 1., 4769.,

6., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,0., 0., 0., 0., 0., 0., 0.,

0., 0., 0., 0., 0., 0., 0., 0., 10., 4., 2., 4., 2., 2., 3., 1., 1., 3603.,

6., 0., 0., 0., 0., 0., 0., 0.,0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,

0., 0., 0., 0., 0., 0., 0.,0., 0., 12., 3., 3., 2., 1., 0., 2., 0., 4147.,

6., 0., 0., 0., 0.,0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,

6., 0., 0.,60.,0., 0., 0., 0., 0., 0., 9., 4.,6., 1., 0., 1., 0., 4293.,

6., 0.,0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,

0.,0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 28., 3., 1., 2., 0., 1., 3455,

6., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,0.,

0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 6., 5., 2., 2.,1., 3673.,

6., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,0., 0., 0., 0.,

0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,12., 4., 6., 0., 3900.,

6., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,0., 0., 0., 0., 0., 0., 0.,

0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,0.,, 0., 0., 0., 7., 5., 1., 3578.,

6., 0., 0., 0., 0., 0., 0., 0.,0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,

0., 0., 0., 0., 0., 0., 0.,0., 0., 0., 0., 0., 0., 0., 0., 7., 0., 4481.,
, 0., 0., 0., 0., 0 0., 0 0., 0 0., 0., 0.,

0., 0., 0., 0., 0.,0. . . .
0., 0., 0., 0.,0., 0., 0., 0., 0., 0., 0., 0., 0., 0., O., O., 5., 4334.
),.Dim = ¢ (35,36))

Starting values

list (tauy = 1, Na = ¢(1000.,1000,1092.23,1100.01,1234.32,1460.85,1570.38,1819.79,
1391.27,1507.60,1541.44,1631.21, 1628.60,1609.33,1801.68,1809.08,1754.74,
1779.48,1699.13,1681.39,1610.46,1918.45,1717.07,1415.69, 1229.02,1082.02,
1096.61,1045.84,1137.03,981.1,647.67,992.65,968.62,926.83,952.96,865.64),
N1 = c(400,400,400,400,400,400,400,400,400,400,400,400,400,400,400,400,400,
400,400,400,400,400,400,400,400,400,400,400,400,400,400,400,400,400,400,400), al-
phal = 1, alphaa = 2, alphap = -2, alphal = -4, betal =-2, betaa = 0.1, beta p =-0.7,
betal = -0.3
)




